--                                                              -*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
-- | This module provides the generated Happy parser for Haskell. It exports
-- a number of parsers which may be used in any library that uses the GHC API.
-- A common usage pattern is to initialize the parser state with a given string
-- and then parse that string:
--
-- @
--     runParser :: DynFlags -> String -> P a -> ParseResult a
--     runParser flags str parser = unP parser parseState
--     where
--       filename = "\<interactive\>"
--       location = mkRealSrcLoc (mkFastString filename) 1 1
--       buffer = stringToStringBuffer str
--       parseState = mkPState flags buffer location
-- @
module Parser (parseModule, parseSignature, parseImport, parseStatement, parseBackpack,
               parseDeclaration, parseExpression, parsePattern,
               parseTypeSignature,
               parseStmt, parseIdentifier,
               parseType, parseHeader) where

-- base
import Control.Monad    ( unless, liftM )
import GHC.Exts
import Data.Char
import Control.Monad    ( mplus )
import Control.Applicative ((<$))

-- compiler/hsSyn
import HsSyn

-- compiler/main
import HscTypes         ( IsBootInterface, WarningTxt(..) )
import DynFlags
import BkpSyn
import PackageConfig

-- compiler/utils
import OrdList
import BooleanFormula   ( BooleanFormula(..), LBooleanFormula(..), mkTrue )
import FastString
import Maybes           ( orElse )
import Outputable

-- compiler/basicTypes
import RdrName
import OccName          ( varName, dataName, tcClsName, tvName, startsWithUnderscore )
import DataCon          ( DataCon, dataConName )
import SrcLoc
import Module
import BasicTypes

-- compiler/types
import Type             ( funTyCon )
import Kind             ( Kind )
import Class            ( FunDep )

-- compiler/parser
import RdrHsSyn
import Lexer
import HaddockUtils
import ApiAnnotation

-- compiler/typecheck
import TcEvidence       ( emptyTcEvBinds )

-- compiler/prelude
import ForeignCall
import TysPrim          ( eqPrimTyCon )
import PrelNames        ( eqTyCon_RDR )
import TysWiredIn       ( unitTyCon, unitDataCon, tupleTyCon, tupleDataCon, nilDataCon,
                          unboxedUnitTyCon, unboxedUnitDataCon,
                          listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )

-- compiler/utils
import Util             ( looksLikePackageName )
import Prelude

import qualified GHC.LanguageExtensions as LangExt
}

%expect 36 -- shift/reduce conflicts

{- Last updated: 3 Aug 2016

If you modify this parser and add a conflict, please update this comment.
You can learn more about the conflicts by passing 'happy' the -i flag:

    happy -agc --strict compiler/parser/Parser.y -idetailed-info

How is this section formatted? Look up the state the conflict is
reported at, and copy the list of applicable rules (at the top, without the
rule numbers).  Mark *** for the rule that is the conflicting reduction (that
is, the interpretation which is NOT taken).  NB: Happy doesn't print a rule
in a state if it is empty, but you should include it in the list (you can
look these up in the Grammar section of the info file).

Obviously the state numbers are not stable across modifications to the parser,
the idea is to reproduce enough information on each conflict so you can figure
out what happened if the states were renumbered.  Try not to gratuitously move
productions around in this file.

-------------------------------------------------------------------------------

state 0 contains 1 shift/reduce conflicts.

    Conflicts: DOCNEXT (empty missing_module_keyword reduces)

Ambiguity when the source file starts with "-- | doc". We need another
token of lookahead to determine if a top declaration or the 'module' keyword
follows. Shift parses as if the 'module' keyword follows.

-------------------------------------------------------------------------------

state 48 contains 2 shift/reduce conflicts.

    *** strict_mark -> unpackedness .
        strict_mark -> unpackedness . strictness

    Conflicts: '~' '!'

-------------------------------------------------------------------------------

state 52 contains 1 shift/reduce conflict.

        context -> btype .
    *** type -> btype .
        type -> btype . '->' ctype

    Conflicts: '->'

-------------------------------------------------------------------------------

state 53 contains 9 shift/reduce conflicts.

    *** btype -> tyapps .
        tyapps -> tyapps . tyapp

    Conflicts: ':' '-' '!' '.' '`' VARSYM CONSYM QVARSYM QCONSYM

-------------------------------------------------------------------------------

state 134 contains 14 shift/reduce conflicts.

        exp -> infixexp . '::' sigtype
        exp -> infixexp . '-<' exp
        exp -> infixexp . '>-' exp
        exp -> infixexp . '-<<' exp
        exp -> infixexp . '>>-' exp
    *** exp -> infixexp .
        infixexp -> infixexp . qop exp10

    Conflicts: ':' '::' '-' '!' '-<' '>-' '-<<' '>>-'
               '.' '`' VARSYM CONSYM QVARSYM QCONSYM

Examples of ambiguity:
    'if x then y else z -< e'
    'if x then y else z :: T'
    'if x then y else z + 1' (NB: '+' is in VARSYM)

Shift parses as (per longest-parse rule):
    'if x then y else (z -< T)'
    'if x then y else (z :: T)'
    'if x then y else (z + 1)'

-------------------------------------------------------------------------------

state 299 contains 1 shift/reduce conflicts.

        rule -> STRING . rule_activation rule_forall infixexp '=' exp

    Conflict: '[' (empty rule_activation reduces)

We don't know whether the '[' starts the activation or not: it
might be the start of the declaration with the activation being
empty.  --SDM 1/4/2002

Example ambiguity:
    '{-# RULE [0] f = ... #-}'

We parse this as having a [0] rule activation for rewriting 'f', rather
a rule instructing how to rewrite the expression '[0] f'.

-------------------------------------------------------------------------------

state 309 contains 1 shift/reduce conflict.

    *** type -> btype .
        type -> btype . '->' ctype

    Conflict: '->'

Same as state 50 but without contexts.

-------------------------------------------------------------------------------

state 348 contains 1 shift/reduce conflicts.

        tup_exprs -> commas . tup_tail
        sysdcon_nolist -> '(' commas . ')'
        commas -> commas . ','

    Conflict: ')' (empty tup_tail reduces)

A tuple section with NO free variables '(,,)' is indistinguishable
from the Haskell98 data constructor for a tuple.  Shift resolves in
favor of sysdcon, which is good because a tuple section will get rejected
if -XTupleSections is not specified.

-------------------------------------------------------------------------------

state 402 contains 1 shift/reduce conflicts.

        tup_exprs -> commas . tup_tail
        sysdcon_nolist -> '(#' commas . '#)'
        commas -> commas . ','

    Conflict: '#)' (empty tup_tail reduces)

Same as State 324 for unboxed tuples.

-------------------------------------------------------------------------------

state 477 contains 1 shift/reduce conflict.

        oqtycon -> '(' qtyconsym . ')'
    *** qtyconop -> qtyconsym .

    Conflict: ')'

TODO: Why?

-------------------------------------------------------------------------------

state 658 contains 1 shift/reduce conflicts.

    *** aexp2 -> ipvar .
        dbind -> ipvar . '=' exp

    Conflict: '='

Example ambiguity: 'let ?x ...'

The parser can't tell whether the ?x is the lhs of a normal binding or
an implicit binding.  Fortunately, resolving as shift gives it the only
sensible meaning, namely the lhs of an implicit binding.

-------------------------------------------------------------------------------

state 731 contains 1 shift/reduce conflicts.

        rule -> STRING rule_activation . rule_forall infixexp '=' exp

    Conflict: 'forall' (empty rule_forall reduces)

Example ambiguity: '{-# RULES "name" forall = ... #-}'

'forall' is a valid variable name---we don't know whether
to treat a forall on the input as the beginning of a quantifier
or the beginning of the rule itself.  Resolving to shift means
it's always treated as a quantifier, hence the above is disallowed.
This saves explicitly defining a grammar for the rule lhs that
doesn't include 'forall'.

-------------------------------------------------------------------------------

state 963 contains 1 shift/reduce conflicts.

        transformqual -> 'then' 'group' . 'using' exp
        transformqual -> 'then' 'group' . 'by' exp 'using' exp
    *** special_id -> 'group' .

    Conflict: 'by'

-------------------------------------------------------------------------------

state 1303 contains 1 shift/reduce conflict.

    *** atype -> tyvar .
        tv_bndr -> '(' tyvar . '::' kind ')'

    Conflict: '::'

TODO: Why?

-------------------------------------------------------------------------------
-- API Annotations
--

A lot of the productions are now cluttered with calls to
aa,am,ams,amms etc.

These are helper functions to make sure that the locations of the
various keywords such as do / let / in are captured for use by tools
that want to do source to source conversions, such as refactorers or
structured editors.

The helper functions are defined at the bottom of this file.

See
  https://ghc.haskell.org/trac/ghc/wiki/ApiAnnotations and
  https://ghc.haskell.org/trac/ghc/wiki/GhcAstAnnotations
for some background.

If you modify the parser and want to ensure that the API annotations are processed
correctly, see the README in (REPO)/utils/check-api-annotations for details on
how to set up a test using the check-api-annotations utility, and interpret the
output it generates.

Note [Parsing lists]
---------------------
You might be wondering why we spend so much effort encoding our lists this
way:

importdecls
        : importdecls ';' importdecl
        | importdecls ';'
        | importdecl
        | {- empty -}

This might seem like an awfully roundabout way to declare a list; plus, to add
insult to injury you have to reverse the results at the end.  The answer is that
left recursion prevents us from running out of stack space when parsing long
sequences.  See: https://www.haskell.org/happy/doc/html/sec-sequences.html for
more guidance.

By adding/removing branches, you can affect what lists are accepted.  Here
are the most common patterns, rewritten as regular expressions for clarity:

    -- Equivalent to: ';'* (x ';'+)* x?  (can be empty, permits leading/trailing semis)
    xs : xs ';' x
       | xs ';'
       | x
       | {- empty -}

    -- Equivalent to x (';' x)* ';'*  (non-empty, permits trailing semis)
    xs : xs ';' x
       | xs ';'
       | x

    -- Equivalent to ';'* alts (';' alts)* ';'* (non-empty, permits leading/trailing semis)
    alts : alts1
         | ';' alts
    alts1 : alts1 ';' alt
          | alts1 ';'
          | alt

    -- Equivalent to x (',' x)+ (non-empty, no trailing semis)
    xs : x
       | x ',' xs

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }            -- Haskell keywords
 'as'           { L _ ITas }
 'case'         { L _ ITcase }
 'class'        { L _ ITclass }
 'data'         { L _ ITdata }
 'default'      { L _ ITdefault }
 'deriving'     { L _ ITderiving }
 'do'           { L _ ITdo }
 'else'         { L _ ITelse }
 'hiding'       { L _ IThiding }
 'if'           { L _ ITif }
 'import'       { L _ ITimport }
 'in'           { L _ ITin }
 'infix'        { L _ ITinfix }
 'infixl'       { L _ ITinfixl }
 'infixr'       { L _ ITinfixr }
 'instance'     { L _ ITinstance }
 'let'          { L _ ITlet }
 'module'       { L _ ITmodule }
 'newtype'      { L _ ITnewtype }
 'of'           { L _ ITof }
 'qualified'    { L _ ITqualified }
 'then'         { L _ ITthen }
 'type'         { L _ ITtype }
 'where'        { L _ ITwhere }

 'forall'       { L _ (ITforall _) }                -- GHC extension keywords
 'foreign'      { L _ ITforeign }
 'export'       { L _ ITexport }
 'label'        { L _ ITlabel }
 'dynamic'      { L _ ITdynamic }
 'safe'         { L _ ITsafe }
 'interruptible' { L _ ITinterruptible }
 'unsafe'       { L _ ITunsafe }
 'mdo'          { L _ ITmdo }
 'family'       { L _ ITfamily }
 'role'         { L _ ITrole }
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'capi'         { L _ ITcapiconv }
 'prim'         { L _ ITprimcallconv }
 'javascript'   { L _ ITjavascriptcallconv }
 'proc'         { L _ ITproc }          -- for arrow notation extension
 'rec'          { L _ ITrec }           -- for arrow notation extension
 'group'    { L _ ITgroup }     -- for list transform extension
 'by'       { L _ ITby }        -- for list transform extension
 'using'    { L _ ITusing }     -- for list transform extension
 'pattern'      { L _ ITpattern } -- for pattern synonyms
 'static'       { L _ ITstatic }  -- for static pointers extension
 'stock'        { L _ ITstock }    -- for DerivingStrategies extension
 'anyclass'     { L _ ITanyclass } -- for DerivingStrategies extension

 'unit'         { L _ ITunit }
 'signature'    { L _ ITsignature }
 'dependency'   { L _ ITdependency }

 '{-# INLINE'             { L _ (ITinline_prag _ _ _) } -- INLINE or INLINABLE
 '{-# SPECIALISE'         { L _ (ITspec_prag _) }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _ _) }
 '{-# SOURCE'             { L _ (ITsource_prag _) }
 '{-# RULES'              { L _ (ITrules_prag _) }
 '{-# CORE'               { L _ (ITcore_prag _) }      -- hdaume: annotated core
 '{-# SCC'                { L _ (ITscc_prag _)}
 '{-# GENERATED'          { L _ (ITgenerated_prag _) }
 '{-# DEPRECATED'         { L _ (ITdeprecated_prag _) }
 '{-# WARNING'            { L _ (ITwarning_prag _) }
 '{-# UNPACK'             { L _ (ITunpack_prag _) }
 '{-# NOUNPACK'           { L _ (ITnounpack_prag _) }
 '{-# ANN'                { L _ (ITann_prag _) }
 '{-# VECTORISE'          { L _ (ITvect_prag _) }
 '{-# VECTORISE_SCALAR'   { L _ (ITvect_scalar_prag _) }
 '{-# NOVECTORISE'        { L _ (ITnovect_prag _) }
 '{-# MINIMAL'            { L _ (ITminimal_prag _) }
 '{-# CTYPE'              { L _ (ITctype _) }
 '{-# OVERLAPPING'        { L _ (IToverlapping_prag _) }
 '{-# OVERLAPPABLE'       { L _ (IToverlappable_prag _) }
 '{-# OVERLAPS'           { L _ (IToverlaps_prag _) }
 '{-# INCOHERENT'         { L _ (ITincoherent_prag _) }
 '{-# COMPLETE'           { L _ (ITcomplete_prag _)   }
 '#-}'                    { L _ ITclose_prag }

 '..'           { L _ ITdotdot }                        -- reserved symbols
 ':'            { L _ ITcolon }
 '::'           { L _ (ITdcolon _) }
 '='            { L _ ITequal }
 '\\'           { L _ ITlam }
 'lcase'        { L _ ITlcase }
 '|'            { L _ ITvbar }
 '<-'           { L _ (ITlarrow _) }
 '->'           { L _ (ITrarrow _) }
 '@'            { L _ ITat }
 '~'            { L _ ITtilde }
 '~#'           { L _ ITtildehsh }
 '=>'           { L _ (ITdarrow _) }
 '-'            { L _ ITminus }
 '!'            { L _ ITbang }
 '-<'           { L _ (ITlarrowtail _) }            -- for arrow notation
 '>-'           { L _ (ITrarrowtail _) }            -- for arrow notation
 '-<<'          { L _ (ITLarrowtail _) }            -- for arrow notation
 '>>-'          { L _ (ITRarrowtail _) }            -- for arrow notation
 '.'            { L _ ITdot }
 TYPEAPP        { L _ ITtypeApp }

 '{'            { L _ ITocurly }                        -- special symbols
 '}'            { L _ ITccurly }
 vocurly        { L _ ITvocurly } -- virtual open curly (from layout)
 vccurly        { L _ ITvccurly } -- virtual close curly (from layout)
 '['            { L _ ITobrack }
 ']'            { L _ ITcbrack }
 '[:'           { L _ ITopabrack }
 ':]'           { L _ ITcpabrack }
 '('            { L _ IToparen }
 ')'            { L _ ITcparen }
 '(#'           { L _ IToubxparen }
 '#)'           { L _ ITcubxparen }
 '(|'           { L _ (IToparenbar _) }
 '|)'           { L _ (ITcparenbar _) }
 ';'            { L _ ITsemi }
 ','            { L _ ITcomma }
 '`'            { L _ ITbackquote }
 SIMPLEQUOTE    { L _ ITsimpleQuote      }     -- 'x

 VARID          { L _ (ITvarid    _) }          -- identifiers
 CONID          { L _ (ITconid    _) }
 VARSYM         { L _ (ITvarsym   _) }
 CONSYM         { L _ (ITconsym   _) }
 QVARID         { L _ (ITqvarid   _) }
 QCONID         { L _ (ITqconid   _) }
 QVARSYM        { L _ (ITqvarsym  _) }
 QCONSYM        { L _ (ITqconsym  _) }

 IPDUPVARID     { L _ (ITdupipvarid   _) }              -- GHC extension
 LABELVARID     { L _ (ITlabelvarid   _) }

 CHAR           { L _ (ITchar   _ _) }
 STRING         { L _ (ITstring _ _) }
 INTEGER        { L _ (ITinteger _ _) }
 RATIONAL       { L _ (ITrational _) }

 PRIMCHAR       { L _ (ITprimchar   _ _) }
 PRIMSTRING     { L _ (ITprimstring _ _) }
 PRIMINTEGER    { L _ (ITprimint    _ _) }
 PRIMWORD       { L _ (ITprimword   _ _) }
 PRIMFLOAT      { L _ (ITprimfloat  _) }
 PRIMDOUBLE     { L _ (ITprimdouble _) }

 DOCNEXT        { L _ (ITdocCommentNext _) }
 DOCPREV        { L _ (ITdocCommentPrev _) }
 DOCNAMED       { L _ (ITdocCommentNamed _) }
 DOCSECTION     { L _ (ITdocSection _ _) }

-- Template Haskell
'[|'            { L _ (ITopenExpQuote _ _) }
'[p|'           { L _ ITopenPatQuote  }
'[t|'           { L _ ITopenTypQuote  }
'[d|'           { L _ ITopenDecQuote  }
'|]'            { L _ (ITcloseQuote _) }
'[||'           { L _ (ITopenTExpQuote _) }
'||]'           { L _ ITcloseTExpQuote  }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('            { L _ ITparenEscape   }     -- $( exp )
TH_ID_TY_SPLICE { L _ (ITidTyEscape _)  }   -- $$x
'$$('           { L _ ITparenTyEscape   }   -- $$( exp )
TH_TY_QUOTE     { L _ ITtyQuote       }      -- ''T
TH_QUASIQUOTE   { L _ (ITquasiQuote _) }
TH_QQUASIQUOTE  { L _ (ITqQuasiQuote _) }

%monad { P } { >>= } { return }
%lexer { (lexer True) } { L _ ITeof }
%tokentype { (Located Token) }

-- Exported parsers
%name parseModule module
%name parseSignature signature
%name parseImport importdecl
%name parseStatement stmt
%name parseDeclaration topdecl
%name parseExpression exp
%name parsePattern pat
%name parseTypeSignature sigdecl
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
%name parseType ctype
%name parseBackpack backpack
%partial parseHeader header
%%

-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
        : qvar                          { $1 }
        | qcon                          { $1 }
        | qvarop                        { $1 }
        | qconop                        { $1 }
    | '(' '->' ')'      {% ams (sLL $1 $> $ getRdrName funTyCon)
                               [mj AnnOpenP $1,mu AnnRarrow $2,mj AnnCloseP $3] }

-----------------------------------------------------------------------------
-- Backpack stuff

backpack :: { [LHsUnit PackageName] }
         : implicit_top units close { fromOL $2 }
         | '{' units '}'            { fromOL $2 }

units :: { OrdList (LHsUnit PackageName) }
         : units ';' unit { $1 `appOL` unitOL $3 }
         | units ';'      { $1 }
         | unit           { unitOL $1 }

unit :: { LHsUnit PackageName }
        : 'unit' pkgname 'where' unitbody
            { sL1 $1 $ HsUnit { hsunitName = $2
                              , hsunitBody = fromOL $4 } }

unitid :: { LHsUnitId PackageName }
        : pkgname                  { sL1 $1 $ HsUnitId $1 [] }
        | pkgname '[' msubsts ']'  { sLL $1 $> $ HsUnitId $1 (fromOL $3) }

msubsts :: { OrdList (LHsModuleSubst PackageName) }
        : msubsts ',' msubst { $1 `appOL` unitOL $3 }
        | msubsts ','        { $1 }
        | msubst             { unitOL $1 }

msubst :: { LHsModuleSubst PackageName }
        : modid '=' moduleid { sLL $1 $> $ ($1, $3) }
        | modid VARSYM modid VARSYM { sLL $1 $> $ ($1, sLL $2 $> $ HsModuleVar $3) }

moduleid :: { LHsModuleId PackageName }
          : VARSYM modid VARSYM { sLL $1 $> $ HsModuleVar $2 }
          | unitid ':' modid    { sLL $1 $> $ HsModuleId $1 $3 }

pkgname :: { Located PackageName }
        : STRING     { sL1 $1 $ PackageName (getSTRING $1) }
        | litpkgname { sL1 $1 $ PackageName (unLoc $1) }

litpkgname_segment :: { Located FastString }
        : VARID  { sL1 $1 $ getVARID $1 }
        | CONID  { sL1 $1 $ getCONID $1 }
        | special_id { $1 }

litpkgname :: { Located FastString }
        : litpkgname_segment { $1 }
        -- a bit of a hack, means p - b is parsed same as p-b, enough for now.
        | litpkgname_segment '-' litpkgname  { sLL $1 $> $ appendFS (unLoc $1) (consFS '-' (unLoc $3)) }

mayberns :: { Maybe [LRenaming] }
        : {- empty -} { Nothing }
        | '(' rns ')' { Just (fromOL $2) }

rns :: { OrdList LRenaming }
        : rns ',' rn { $1 `appOL` unitOL $3 }
        | rns ','    { $1 }
        | rn         { unitOL $1 }

rn :: { LRenaming }
        : modid 'as' modid { sLL $1 $> $ Renaming $1 (Just $3) }
        | modid            { sL1 $1    $ Renaming $1 Nothing }

unitbody :: { OrdList (LHsUnitDecl PackageName) }
        : '{'     unitdecls '}'   { $2 }
        | vocurly unitdecls close { $2 }

unitdecls :: { OrdList (LHsUnitDecl PackageName) }
        : unitdecls ';' unitdecl { $1 `appOL` unitOL $3 }
        | unitdecls ';'         { $1 }
        | unitdecl              { unitOL $1 }

unitdecl :: { LHsUnitDecl PackageName }
        : maybedocheader 'module' modid maybemodwarning maybeexports 'where' body
             -- XXX not accurate
             { sL1 $2 $ DeclD ModuleD $3 (Just (sL1 $2 (HsModule (Just $3) $5 (fst $ snd $7) (snd $ snd $7) $4 $1))) }
        | maybedocheader 'signature' modid maybemodwarning maybeexports 'where' body
             { sL1 $2 $ DeclD SignatureD $3 (Just (sL1 $2 (HsModule (Just $3) $5 (fst $ snd $7) (snd $ snd $7) $4 $1))) }
        -- NB: MUST have maybedocheader here, otherwise shift-reduce conflict
        -- will prevent us from parsing both forms.
        | maybedocheader 'module' modid
             { sL1 $2 $ DeclD ModuleD $3 Nothing }
        | maybedocheader 'signature' modid
             { sL1 $2 $ DeclD SignatureD $3 Nothing }
        | 'dependency' unitid mayberns
             { sL1 $1 $ IncludeD (IncludeDecl { idUnitId = $2
                                              , idModRenaming = $3
                                              , idSignatureInclude = False }) }
        | 'dependency' 'signature' unitid
             { sL1 $1 $ IncludeD (IncludeDecl { idUnitId = $3
                                              , idModRenaming = Nothing
                                              , idSignatureInclude = True }) }

-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

signature :: { Located (HsModule RdrName) }
       : maybedocheader 'signature' modid maybemodwarning maybeexports 'where' body
             {% fileSrcSpan >>= \ loc ->
                ams (L loc (HsModule (Just $3) $5 (fst $ snd $7)
                              (snd $ snd $7) $4 $1)
                    )
                    ([mj AnnSignature $2, mj AnnWhere $6] ++ fst $7) }

module :: { Located (HsModule RdrName) }
       : maybedocheader 'module' modid maybemodwarning maybeexports 'where' body
             {% fileSrcSpan >>= \ loc ->
                ams (L loc (HsModule (Just $3) $5 (fst $ snd $7)
                              (snd $ snd $7) $4 $1)
                    )
                    ([mj AnnModule $2, mj AnnWhere $6] ++ fst $7) }
        | body2
                {% fileSrcSpan >>= \ loc ->
                   ams (L loc (HsModule Nothing Nothing
                               (fst $ snd $1) (snd $ snd $1) Nothing Nothing))
                       (fst $1) }

maybedocheader :: { Maybe LHsDocString }
        : moduleheader            { $1 }
        | {- empty -}             { Nothing }

missing_module_keyword :: { () }
        : {- empty -}                           {% pushModuleContext }

implicit_top :: { () }
        : {- empty -}                           {% pushModuleContext }

maybemodwarning :: { Maybe (Located WarningTxt) }
    : '{-# DEPRECATED' strings '#-}'
                      {% ajs (Just (sLL $1 $> $ DeprecatedTxt (sL1 $1 (getDEPRECATED_PRAGs $1)) (snd $ unLoc $2)))
                             (mo $1:mc $3: (fst $ unLoc $2)) }
    | '{-# WARNING' strings '#-}'
                         {% ajs (Just (sLL $1 $> $ WarningTxt (sL1 $1 (getWARNING_PRAGs $1)) (snd $ unLoc $2)))
                                (mo $1:mc $3 : (fst $ unLoc $2)) }
    |  {- empty -}                  { Nothing }

body    :: { ([AddAnn]
             ,([LImportDecl RdrName], [LHsDecl RdrName])) }
        :  '{'            top '}'      { (moc $1:mcc $3:(fst $2)
                                         , snd $2) }
        |      vocurly    top close    { (fst $2, snd $2) }

body2   :: { ([AddAnn]
             ,([LImportDecl RdrName], [LHsDecl RdrName])) }
        :  '{' top '}'                          { (moc $1:mcc $3
                                                   :(fst $2), snd $2) }
        |  missing_module_keyword top close     { ([],snd $2) }


top     :: { ([AddAnn]
             ,([LImportDecl RdrName], [LHsDecl RdrName])) }
        : semis top1                            { ($1, $2) }

top1    :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
        : importdecls_semi topdecls_semi        { (reverse $1, cvTopDecls $2) }
        | importdecls_semi topdecls             { (reverse $1, cvTopDecls $2) }
        | importdecls                           { (reverse $1, []) }

-----------------------------------------------------------------------------
-- Module declaration & imports only

header  :: { Located (HsModule RdrName) }
        : maybedocheader 'module' modid maybemodwarning maybeexports 'where' header_body
                {% fileSrcSpan >>= \ loc ->
                   ams (L loc (HsModule (Just $3) $5 $7 [] $4 $1
                          )) [mj AnnModule $2,mj AnnWhere $6] }
        | maybedocheader 'signature' modid maybemodwarning maybeexports 'where' header_body
                {% fileSrcSpan >>= \ loc ->
                   ams (L loc (HsModule (Just $3) $5 $7 [] $4 $1
                          )) [mj AnnModule $2,mj AnnWhere $6] }
        | header_body2
                {% fileSrcSpan >>= \ loc ->
                   return (L loc (HsModule Nothing Nothing $1 [] Nothing
                          Nothing)) }

header_body :: { [LImportDecl RdrName] }
        :  '{'            header_top            { $2 }
        |      vocurly    header_top            { $2 }

header_body2 :: { [LImportDecl RdrName] }
        :  '{' header_top                       { $2 }
        |  missing_module_keyword header_top    { $2 }

header_top :: { [LImportDecl RdrName] }
        :  semis header_top_importdecls         { $2 }

header_top_importdecls :: { [LImportDecl RdrName] }
        :  importdecls_semi                     { $1 }
        |  importdecls                          { $1 }

-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { (Maybe (Located [LIE RdrName])) }
        :  '(' exportlist ')'       {% ams (sLL $1 $> ()) [mop $1,mcp $3] >>
                                       return (Just (sLL $1 $> (fromOL $2))) }
        |  {- empty -}              { Nothing }

exportlist :: { OrdList (LIE RdrName) }
        : expdoclist ',' expdoclist   {% addAnnotation (oll $1) AnnComma (gl $2)
                                         >> return ($1 `appOL` $3) }
        | exportlist1                 { $1 }

exportlist1 :: { OrdList (LIE RdrName) }
        : expdoclist export expdoclist ',' exportlist1
                          {% (addAnnotation (oll ($1 `appOL` $2 `appOL` $3))
                                            AnnComma (gl $4) ) >>
                              return ($1 `appOL` $2 `appOL` $3 `appOL` $5) }
        | expdoclist export expdoclist             { $1 `appOL` $2 `appOL` $3 }
        | expdoclist                               { $1 }

expdoclist :: { OrdList (LIE RdrName) }
        : exp_doc expdoclist                           { $1 `appOL` $2 }
        | {- empty -}                                  { nilOL }

exp_doc :: { OrdList (LIE RdrName) }
        : docsection    { unitOL (sL1 $1 (case (unLoc $1) of (n, doc) -> IEGroup n doc)) }
        | docnamed      { unitOL (sL1 $1 (IEDocNamed ((fst . unLoc) $1))) }
        | docnext       { unitOL (sL1 $1 (IEDoc (unLoc $1))) }


   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export  :: { OrdList (LIE RdrName) }
        : qcname_ext export_subspec  {% mkModuleImpExp $1 (snd $ unLoc $2)
                                          >>= \ie -> amsu (sLL $1 $> ie) (fst $ unLoc $2) }
        |  'module' modid            {% amsu (sLL $1 $> (IEModuleContents $2))
                                             [mj AnnModule $1] }
        |  'pattern' qcon            {% amsu (sLL $1 $> (IEVar (sLL $1 $> (IEPattern $2))))
                                             [mj AnnPattern $1] }

export_subspec :: { Located ([AddAnn],ImpExpSubSpec) }
        : {- empty -}             { sL0 ([],ImpExpAbs) }
        | '(' qcnames ')'         {% mkImpExpSubSpec (reverse (snd $2))
                                      >>= \(as,ie) -> return $ sLL $1 $>
                                            (as ++ [mop $1,mcp $3] ++ fst $2, ie) }


qcnames :: { ([AddAnn], [Located ImpExpQcSpec]) }
  : {- empty -}                   { ([],[]) }
  | qcnames1                      { $1 }

qcnames1 :: { ([AddAnn], [Located ImpExpQcSpec]) }     -- A reversed list
        :  qcnames1 ',' qcname_ext_w_wildcard  {% case (head (snd $1)) of
                                                    l@(L _ ImpExpQcWildcard) ->
                                                       return ([mj AnnComma $2, mj AnnDotdot l]
                                                               ,(snd (unLoc $3)  : snd $1))
                                                    l -> (ams (head (snd $1)) [mj AnnComma $2] >>
                                                          return (fst $1 ++ fst (unLoc $3),
                                                                  snd (unLoc $3) : snd $1)) }


        -- Annotations re-added in mkImpExpSubSpec
        |  qcname_ext_w_wildcard                   { (fst (unLoc $1),[snd (unLoc $1)]) }

-- Variable, data constructor or wildcard
-- or tagged type constructor
qcname_ext_w_wildcard :: { Located ([AddAnn], Located ImpExpQcSpec) }
        :  qcname_ext               { sL1 $1 ([],$1) }
        |  '..'                     { sL1 $1 ([mj AnnDotdot $1], sL1 $1 ImpExpQcWildcard)  }

qcname_ext :: { Located ImpExpQcSpec }
        :  qcname                   { sL1 $1 (ImpExpQcName $1) }
        |  'type' oqtycon           {% do { n <- mkTypeImpExp $2
                                          ; ams (sLL $1 $> (ImpExpQcType n))
                                                [mj AnnType $1] } }

qcname  :: { Located RdrName }  -- Variable or type constructor
        :  qvar                 { $1 } -- Things which look like functions
                                       -- Note: This includes record selectors but
                                       -- also (-.->), see #11432
        |  oqtycon_no_varcon    { $1 } -- see Note [Type constructors in export list]

-----------------------------------------------------------------------------
-- Import Declarations

-- importdecls and topdecls must contain at least one declaration;
-- top handles the fact that these may be optional.

-- One or more semicolons
semis1  :: { [AddAnn] }
semis1  : semis1 ';'  { mj AnnSemi $2 : $1 }
        | ';'         { [mj AnnSemi $1] }

-- Zero or more semicolons
semis   :: { [AddAnn] }
semis   : semis ';'   { mj AnnSemi $2 : $1 }
        | {- empty -} { [] }

-- No trailing semicolons, non-empty
importdecls :: { [LImportDecl RdrName] }
importdecls
        : importdecls_semi importdecl
                                { $2 : $1 }

-- May have trailing semicolons, can be empty
importdecls_semi :: { [LImportDecl RdrName] }
importdecls_semi
        : importdecls_semi importdecl semis1
                                {% ams $2 $3 >> return ($2 : $1) }
        | {- empty -}           { [] }

importdecl :: { LImportDecl RdrName }
        : 'import' maybe_src maybe_safe optqualified maybe_pkg modid maybeas maybeimpspec
                {% ams (L (comb4 $1 $6 (snd $7) $8) $
                  ImportDecl { ideclSourceSrc = snd $ fst $2
                             , ideclName = $6, ideclPkgQual = snd $5
                             , ideclSource = snd $2, ideclSafe = snd $3
                             , ideclQualified = snd $4, ideclImplicit = False
                             , ideclAs = unLoc (snd $7)
                             , ideclHiding = unLoc $8 })
                   ((mj AnnImport $1 : (fst $ fst $2) ++ fst $3 ++ fst $4
                                    ++ fst $5 ++ fst $7)) }

maybe_src :: { (([AddAnn],SourceText),IsBootInterface) }
        : '{-# SOURCE' '#-}'        { (([mo $1,mc $2],getSOURCE_PRAGs $1)
                                      ,True) }
        | {- empty -}               { (([],NoSourceText),False) }

maybe_safe :: { ([AddAnn],Bool) }
        : 'safe'                                { ([mj AnnSafe $1],True) }
        | {- empty -}                           { ([],False) }

maybe_pkg :: { ([AddAnn],Maybe StringLiteral) }
        : STRING  {% let pkgFS = getSTRING $1 in
                     if looksLikePackageName (unpackFS pkgFS)
                        then return ([mj AnnPackageName $1], Just (StringLiteral (getSTRINGs $1) pkgFS))
                        else parseErrorSDoc (getLoc $1) $ vcat [
                             text "parse error" <> colon <+> quotes (ppr pkgFS),
                             text "Version number or non-alphanumeric" <+>
                             text "character in package name"] }
        | {- empty -}                           { ([],Nothing) }

optqualified :: { ([AddAnn],Bool) }
        : 'qualified'                           { ([mj AnnQualified $1],True)  }
        | {- empty -}                           { ([],False) }

maybeas :: { ([AddAnn],Located (Maybe (Located ModuleName))) }
        : 'as' modid                           { ([mj AnnAs $1]
                                                 ,sLL $1 $> (Just $2)) }
        | {- empty -}                          { ([],noLoc Nothing) }

maybeimpspec :: { Located (Maybe (Bool, Located [LIE RdrName])) }
        : impspec                  {% let (b, ie) = unLoc $1 in
                                       checkImportSpec ie
                                        >>= \checkedIe ->
                                          return (L (gl $1) (Just (b, checkedIe)))  }
        | {- empty -}              { noLoc Nothing }

impspec :: { Located (Bool, Located [LIE RdrName]) }
        :  '(' exportlist ')'               {% ams (sLL $1 $> (False,
                                                      sLL $1 $> $ fromOL $2))
                                                   [mop $1,mcp $3] }
        |  'hiding' '(' exportlist ')'      {% ams (sLL $1 $> (True,
                                                      sLL $1 $> $ fromOL $3))
                                               [mj AnnHiding $1,mop $2,mcp $4] }

-----------------------------------------------------------------------------
-- Fixity Declarations

prec    :: { Located (SourceText,Int) }
        : {- empty -}           { noLoc (NoSourceText,9) }
        | INTEGER
                 {% checkPrecP (sL1 $1 (getINTEGERs $1,fromInteger (getINTEGER $1))) }

infix   :: { Located FixityDirection }
        : 'infix'                               { sL1 $1 InfixN  }
        | 'infixl'                              { sL1 $1 InfixL  }
        | 'infixr'                              { sL1 $1 InfixR }

ops     :: { Located (OrdList (Located RdrName)) }
        : ops ',' op       {% addAnnotation (oll $ unLoc $1) AnnComma (gl $2) >>
                              return (sLL $1 $> ((unLoc $1) `appOL` unitOL $3))}
        | op               { sL1 $1 (unitOL $1) }

-----------------------------------------------------------------------------
-- Top-Level Declarations

-- No trailing semicolons, non-empty
topdecls :: { OrdList (LHsDecl RdrName) }
        : topdecls_semi topdecl        { $1 `snocOL` $2 }

-- May have trailing semicolons, can be empty
topdecls_semi :: { OrdList (LHsDecl RdrName) }
        : topdecls_semi topdecl semis1 {% ams $2 $3 >> return ($1 `snocOL` $2) }
        | {- empty -}                  { nilOL }

topdecl :: { LHsDecl RdrName }
        : cl_decl                               { sL1 $1 (TyClD (unLoc $1)) }
        | ty_decl                               { sL1 $1 (TyClD (unLoc $1)) }
        | inst_decl                             { sL1 $1 (InstD (unLoc $1)) }
        | stand_alone_deriving                  { sLL $1 $> (DerivD (unLoc $1)) }
        | role_annot                            { sL1 $1 (RoleAnnotD (unLoc $1)) }
        | 'default' '(' comma_types0 ')'    {% ams (sLL $1 $> (DefD (DefaultDecl $3)))
                                                         [mj AnnDefault $1
                                                         ,mop $2,mcp $4] }
        | 'foreign' fdecl          {% ams (sLL $1 $> (snd $ unLoc $2))
                                           (mj AnnForeign $1:(fst $ unLoc $2)) }
        | '{-# DEPRECATED' deprecations '#-}'   {% ams (sLL $1 $> $ WarningD (Warnings (getDEPRECATED_PRAGs $1) (fromOL $2)))
                                                       [mo $1,mc $3] }
        | '{-# WARNING' warnings '#-}'          {% ams (sLL $1 $> $ WarningD (Warnings (getWARNING_PRAGs $1) (fromOL $2)))
                                                       [mo $1,mc $3] }
        | '{-# RULES' rules '#-}'               {% ams (sLL $1 $> $ RuleD (HsRules (getRULES_PRAGs $1) (fromOL $2)))
                                                       [mo $1,mc $3] }
        | '{-# VECTORISE' qvar '=' exp '#-}' {% ams (sLL $1 $> $ VectD (HsVect (getVECT_PRAGs $1) $2 $4))
                                                    [mo $1,mj AnnEqual $3
                                                    ,mc $5] }
        | '{-# NOVECTORISE' qvar '#-}'       {% ams (sLL $1 $> $ VectD (HsNoVect (getNOVECT_PRAGs $1) $2))
                                                     [mo $1,mc $3] }
        | '{-# VECTORISE' 'type' gtycon '#-}'
                                {% ams (sLL $1 $> $
                                    VectD (HsVectTypeIn (getVECT_PRAGs $1) False $3 Nothing))
                                    [mo $1,mj AnnType $2,mc $4] }

        | '{-# VECTORISE_SCALAR' 'type' gtycon '#-}'
                                {% ams (sLL $1 $> $
                                    VectD (HsVectTypeIn (getVECT_SCALAR_PRAGs $1) True $3 Nothing))
                                    [mo $1,mj AnnType $2,mc $4] }

        | '{-# VECTORISE' 'type' gtycon '=' gtycon '#-}'
                                {% ams (sLL $1 $> $
                                    VectD (HsVectTypeIn (getVECT_PRAGs $1) False $3 (Just $5)))
                                    [mo $1,mj AnnType $2,mj AnnEqual $4,mc $6] }
        | '{-# VECTORISE_SCALAR' 'type' gtycon '=' gtycon '#-}'
                                {% ams (sLL $1 $> $
                                    VectD (HsVectTypeIn (getVECT_SCALAR_PRAGs $1) True $3 (Just $5)))
                                    [mo $1,mj AnnType $2,mj AnnEqual $4,mc $6] }

        | '{-# VECTORISE' 'class' gtycon '#-}'
                                         {% ams (sLL $1 $>  $ VectD (HsVectClassIn (getVECT_PRAGs $1) $3))
                                                 [mo $1,mj AnnClass $2,mc $4] }
        | annotation { $1 }
        | decl_no_th                            { $1 }

        -- Template Haskell Extension
        -- The $(..) form is one possible form of infixexp
        -- but we treat an arbitrary expression just as if
        -- it had a $(..) wrapped around it
        | infixexp_top                          { sLL $1 $> $ mkSpliceDecl $1 }

-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
        : 'class' tycl_hdr fds where_cls
                {% amms (mkClassDecl (comb4 $1 $2 $3 $4) $2 $3 (snd $ unLoc $4))
                        (mj AnnClass $1:(fst $ unLoc $3)++(fst $ unLoc $4)) }

-- Type declarations (toplevel)
--
ty_decl :: { LTyClDecl RdrName }
           -- ordinary type synonyms
        : 'type' type '=' ctypedoc
                -- Note ctype, not sigtype, on the right of '='
                -- We allow an explicit for-all but we don't insert one
                -- in   type Foo a = (b,b)
                -- Instead we just say b is out of scope
                --
                -- Note the use of type for the head; this allows
                -- infix type constructors to be declared
                {% amms (mkTySynonym (comb2 $1 $4) $2 $4)
                        [mj AnnType $1,mj AnnEqual $3] }

           -- type family declarations
        | 'type' 'family' type opt_tyfam_kind_sig opt_injective_info
                          where_type_family
                -- Note the use of type for the head; this allows
                -- infix type constructors to be declared
                {% amms (mkFamDecl (comb4 $1 $3 $4 $5) (snd $ unLoc $6) $3
                                   (snd $ unLoc $4) (snd $ unLoc $5))
                        (mj AnnType $1:mj AnnFamily $2:(fst $ unLoc $4)
                           ++ (fst $ unLoc $5) ++ (fst $ unLoc $6)) }

          -- ordinary data type or newtype declaration
        | data_or_newtype capi_ctype tycl_hdr constrs maybe_derivings
                {% amms (mkTyData (comb4 $1 $3 $4 $5) (snd $ unLoc $1) $2 $3
                           Nothing (reverse (snd $ unLoc $4))
                                   (fmap reverse $5))
                                   -- We need the location on tycl_hdr in case
                                   -- constrs and deriving are both empty
                        ((fst $ unLoc $1):(fst $ unLoc $4)) }

          -- ordinary GADT declaration
        | data_or_newtype capi_ctype tycl_hdr opt_kind_sig
                 gadt_constrlist
                 maybe_derivings
            {% amms (mkTyData (comb4 $1 $3 $5 $6) (snd $ unLoc $1) $2 $3
                            (snd $ unLoc $4) (snd $ unLoc $5)
                            (fmap reverse $6) )
                                   -- We need the location on tycl_hdr in case
                                   -- constrs and deriving are both empty
                    ((fst $ unLoc $1):(fst $ unLoc $4)++(fst $ unLoc $5)) }

          -- data/newtype family
        | 'data' 'family' type opt_datafam_kind_sig
                {% amms (mkFamDecl (comb3 $1 $2 $4) DataFamily $3
                                   (snd $ unLoc $4) Nothing)
                        (mj AnnData $1:mj AnnFamily $2:(fst $ unLoc $4)) }

inst_decl :: { LInstDecl RdrName }
        : 'instance' overlap_pragma inst_type where_inst
       {% do { (binds, sigs, _, ats, adts, _) <- cvBindsAndSigs (snd $ unLoc $4)
             ; let cid = ClsInstDecl { cid_poly_ty = $3, cid_binds = binds
                                     , cid_sigs = mkClassOpSigs sigs
                                     , cid_tyfam_insts = ats
                                     , cid_overlap_mode = $2
                                     , cid_datafam_insts = adts }
             ; ams (L (comb3 $1 (hsSigType $3) $4) (ClsInstD { cid_inst = cid }))
                   (mj AnnInstance $1 : (fst $ unLoc $4)) } }

           -- type instance declarations
        | 'type' 'instance' ty_fam_inst_eqn
                {% ams $3 (fst $ unLoc $3)
                >> amms (mkTyFamInst (comb2 $1 $3) (snd $ unLoc $3))
                    (mj AnnType $1:mj AnnInstance $2:(fst $ unLoc $3)) }

          -- data/newtype instance declaration
        | data_or_newtype 'instance' capi_ctype tycl_hdr constrs
                          maybe_derivings
            {% amms (mkDataFamInst (comb4 $1 $4 $5 $6) (snd $ unLoc $1) $3 $4
                                      Nothing (reverse (snd  $ unLoc $5))
                                              (fmap reverse $6))
                    ((fst $ unLoc $1):mj AnnInstance $2:(fst $ unLoc $5)) }

          -- GADT instance declaration
        | data_or_newtype 'instance' capi_ctype tycl_hdr opt_kind_sig
                 gadt_constrlist
                 maybe_derivings
            {% amms (mkDataFamInst (comb4 $1 $4 $6 $7) (snd $ unLoc $1) $3 $4
                                   (snd $ unLoc $5) (snd $ unLoc $6)
                                   (fmap reverse $7))
                    ((fst $ unLoc $1):mj AnnInstance $2
                       :(fst $ unLoc $5)++(fst $ unLoc $6)) }

overlap_pragma :: { Maybe (Located OverlapMode) }
  : '{-# OVERLAPPABLE'    '#-}' {% ajs (Just (sLL $1 $> (Overlappable (getOVERLAPPABLE_PRAGs $1))))
                                       [mo $1,mc $2] }
  | '{-# OVERLAPPING'     '#-}' {% ajs (Just (sLL $1 $> (Overlapping (getOVERLAPPING_PRAGs $1))))
                                       [mo $1,mc $2] }
  | '{-# OVERLAPS'        '#-}' {% ajs (Just (sLL $1 $> (Overlaps (getOVERLAPS_PRAGs $1))))
                                       [mo $1,mc $2] }
  | '{-# INCOHERENT'      '#-}' {% ajs (Just (sLL $1 $> (Incoherent (getINCOHERENT_PRAGs $1))))
                                       [mo $1,mc $2] }
  | {- empty -}                 { Nothing }

deriv_strategy :: { Maybe (Located DerivStrategy) }
  : 'stock'                     {% ajs (Just (sL1 $1 StockStrategy))
                                       [mj AnnStock $1] }
  | 'anyclass'                  {% ajs (Just (sL1 $1 AnyclassStrategy))
                                       [mj AnnAnyclass $1] }
  | 'newtype'                   {% ajs (Just (sL1 $1 NewtypeStrategy))
                                       [mj AnnNewtype $1] }
  | {- empty -}                 { Nothing }

-- Injective type families

opt_injective_info :: { Located ([AddAnn], Maybe (LInjectivityAnn RdrName)) }
        : {- empty -}               { noLoc ([], Nothing) }
        | '|' injectivity_cond      { sLL $1 $> ([mj AnnVbar $1]
                                                , Just ($2)) }

injectivity_cond :: { LInjectivityAnn RdrName }
        : tyvarid '->' inj_varids
           {% ams (sLL $1 $> (InjectivityAnn $1 (reverse (unLoc $3))))
                  [mu AnnRarrow $2] }

inj_varids :: { Located [Located RdrName] }
        : inj_varids tyvarid  { sLL $1 $> ($2 : unLoc $1) }
        | tyvarid             { sLL $1 $> [$1]            }

-- Closed type families

where_type_family :: { Located ([AddAnn],FamilyInfo RdrName) }
        : {- empty -}                      { noLoc ([],OpenTypeFamily) }
        | 'where' ty_fam_inst_eqn_list
               { sLL $1 $> (mj AnnWhere $1:(fst $ unLoc $2)
                    ,ClosedTypeFamily (fmap reverse $ snd $ unLoc $2)) }

ty_fam_inst_eqn_list :: { Located ([AddAnn],Maybe [LTyFamInstEqn RdrName]) }
        :     '{' ty_fam_inst_eqns '}'     { sLL $1 $> ([moc $1,mcc $3]
                                                ,Just (unLoc $2)) }
        | vocurly ty_fam_inst_eqns close   { let L loc _ = $2 in
                                             L loc ([],Just (unLoc $2)) }
        |     '{' '..' '}'                 { sLL $1 $> ([moc $1,mj AnnDotdot $2
                                                 ,mcc $3],Nothing) }
        | vocurly '..' close               { let L loc _ = $2 in
                                             L loc ([mj AnnDotdot $2],Nothing) }

ty_fam_inst_eqns :: { Located [LTyFamInstEqn RdrName] }
        : ty_fam_inst_eqns ';' ty_fam_inst_eqn
                                      {% asl (unLoc $1) $2 (snd $ unLoc $3)
                                         >> ams $3 (fst $ unLoc $3)
                                         >> return (sLL $1 $> ((snd $ unLoc $3) : unLoc $1)) }
        | ty_fam_inst_eqns ';'        {% addAnnotation (gl $1) AnnSemi (gl $2)
                                         >> return (sLL $1 $>  (unLoc $1)) }
        | ty_fam_inst_eqn             {% ams $1 (fst $ unLoc $1)
                                         >> return (sLL $1 $> [snd $ unLoc $1]) }
        | {- empty -}                 { noLoc [] }

ty_fam_inst_eqn :: { Located ([AddAnn],LTyFamInstEqn RdrName) }
        : type '=' ctype
                -- Note the use of type for the head; this allows
                -- infix type constructors and type patterns
              {% do { (eqn,ann) <- mkTyFamInstEqn $1 $3
                    ; return (sLL $1 $> (mj AnnEqual $2:ann, sLL $1 $> eqn))  } }

-- Associated type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
--   identifier).
--
-- * They also need to be separate from instances; otherwise, data family
--   declarations without a kind signature cause parsing conflicts with empty
--   data declarations.
--
at_decl_cls :: { LHsDecl RdrName }
        :  -- data family declarations, with optional 'family' keyword
          'data' opt_family type opt_datafam_kind_sig
                {% amms (liftM mkTyClD (mkFamDecl (comb3 $1 $3 $4) DataFamily $3
                                                  (snd $ unLoc $4) Nothing))
                        (mj AnnData $1:$2++(fst $ unLoc $4)) }

           -- type family declarations, with optional 'family' keyword
           -- (can't use opt_instance because you get shift/reduce errors
        | 'type' type opt_at_kind_inj_sig
               {% amms (liftM mkTyClD
                        (mkFamDecl (comb3 $1 $2 $3) OpenTypeFamily $2
                                   (fst . snd $ unLoc $3)
                                   (snd . snd $ unLoc $3)))
                       (mj AnnType $1:(fst $ unLoc $3)) }
        | 'type' 'family' type opt_at_kind_inj_sig
               {% amms (liftM mkTyClD
                        (mkFamDecl (comb3 $1 $3 $4) OpenTypeFamily $3
                                   (fst . snd $ unLoc $4)
                                   (snd . snd $ unLoc $4)))
                       (mj AnnType $1:mj AnnFamily $2:(fst $ unLoc $4)) }

           -- default type instances, with optional 'instance' keyword
        | 'type' ty_fam_inst_eqn
                {% ams $2 (fst $ unLoc $2) >>
                   amms (liftM mkInstD (mkTyFamInst (comb2 $1 $2) (snd $ unLoc $2)))
                        (mj AnnType $1:(fst $ unLoc $2)) }
        | 'type' 'instance' ty_fam_inst_eqn
                {% ams $3 (fst $ unLoc $3) >>
                   amms (liftM mkInstD (mkTyFamInst (comb2 $1 $3) (snd $ unLoc $3)))
                        (mj AnnType $1:mj AnnInstance $2:(fst $ unLoc $3)) }

opt_family   :: { [AddAnn] }
              : {- empty -}   { [] }
              | 'family'      { [mj AnnFamily $1] }

-- Associated type instances
--
at_decl_inst :: { LInstDecl RdrName }
           -- type instance declarations
        : 'type' ty_fam_inst_eqn
                -- Note the use of type for the head; this allows
                -- infix type constructors and type patterns
                {% ams $2 (fst $ unLoc $2) >>
                   amms (mkTyFamInst (comb2 $1 $2) (snd $ unLoc $2))
                        (mj AnnType $1:(fst $ unLoc $2)) }

        -- data/newtype instance declaration
        | data_or_newtype capi_ctype tycl_hdr constrs maybe_derivings
               {% amms (mkDataFamInst (comb4 $1 $3 $4 $5) (snd $ unLoc $1) $2 $3
                                    Nothing (reverse (snd $ unLoc $4))
                                            (fmap reverse $5))
                       ((fst $ unLoc $1):(fst $ unLoc $4)) }

        -- GADT instance declaration
        | data_or_newtype capi_ctype tycl_hdr opt_kind_sig
                 gadt_constrlist
                 maybe_derivings
                {% amms (mkDataFamInst (comb4 $1 $3 $5 $6) (snd $ unLoc $1) $2
                                $3 (snd $ unLoc $4) (snd $ unLoc $5)
                                (fmap reverse $6))
                        ((fst $ unLoc $1):(fst $ unLoc $4)++(fst $ unLoc $5)) }

data_or_newtype :: { Located (AddAnn, NewOrData) }
        : 'data'        { sL1 $1 (mj AnnData    $1,DataType) }
        | 'newtype'     { sL1 $1 (mj AnnNewtype $1,NewType) }

-- Family result/return kind signatures

opt_kind_sig :: { Located ([AddAnn], Maybe (LHsKind RdrName)) }
        :               { noLoc     ([]               , Nothing) }
        | '::' kind     { sLL $1 $> ([mu AnnDcolon $1], Just $2) }

opt_datafam_kind_sig :: { Located ([AddAnn], LFamilyResultSig RdrName) }
        :               { noLoc     ([]               , noLoc NoSig           )}
        | '::' kind     { sLL $1 $> ([mu AnnDcolon $1], sLL $1 $> (KindSig $2))}

opt_tyfam_kind_sig :: { Located ([AddAnn], LFamilyResultSig RdrName) }
        :              { noLoc     ([]               , noLoc      NoSig       )}
        | '::' kind    { sLL $1 $> ([mu AnnDcolon $1], sLL $1 $> (KindSig  $2))}
        | '='  tv_bndr { sLL $1 $> ([mj AnnEqual $1] , sLL $1 $> (TyVarSig $2))}

opt_at_kind_inj_sig :: { Located ([AddAnn], ( LFamilyResultSig RdrName
                                            , Maybe (LInjectivityAnn RdrName)))}
        :            { noLoc ([], (noLoc NoSig, Nothing)) }
        | '::' kind  { sLL $1 $> ( [mu AnnDcolon $1]
                                 , (sLL $2 $> (KindSig $2), Nothing)) }
        | '='  tv_bndr '|' injectivity_cond
                { sLL $1 $> ([mj AnnEqual $1, mj AnnVbar $3]
                            , (sLL $1 $2 (TyVarSig $2), Just $4))}

-- tycl_hdr parses the header of a class or data type decl,
-- which takes the form
--      T a b
--      Eq a => T a
--      (Eq a, Ord b) => T a b
--      T Int [a]                       -- for associated types
-- Rather a lot of inlining here, else we get reduce/reduce errors
tycl_hdr :: { Located (Maybe (LHsContext RdrName), LHsType RdrName) }
        : context '=>' type         {% addAnnotation (gl $1) (toUnicodeAnn AnnDarrow $2) (gl $2)
                                       >> (return (sLL $1 $> (Just $1, $3)))
                                    }
        | type                      { sL1 $1 (Nothing, $1) }

capi_ctype :: { Maybe (Located CType) }
capi_ctype : '{-# CTYPE' STRING STRING '#-}'
                       {% ajs (Just (sLL $1 $> (CType (getCTYPEs $1) (Just (Header (getSTRINGs $2) (getSTRING $2)))
                                        (getSTRINGs $3,getSTRING $3))))
                              [mo $1,mj AnnHeader $2,mj AnnVal $3,mc $4] }

           | '{-# CTYPE'        STRING '#-}'
                       {% ajs (Just (sLL $1 $> (CType (getCTYPEs $1) Nothing  (getSTRINGs $2, getSTRING $2))))
                              [mo $1,mj AnnVal $2,mc $3] }

           |           { Nothing }

-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
  : 'deriving' deriv_strategy 'instance' overlap_pragma inst_type
                {% do { let { err = text "in the stand-alone deriving instance"
                                    <> colon <+> quotes (ppr $5) }
                      ; ams (sLL $1 (hsSigType $>) (DerivDecl $5 $2 $4))
                            [mj AnnDeriving $1, mj AnnInstance $3] } }

-----------------------------------------------------------------------------
-- Role annotations

role_annot :: { LRoleAnnotDecl RdrName }
role_annot : 'type' 'role' oqtycon maybe_roles
          {% amms (mkRoleAnnotDecl (comb3 $1 $3 $4) $3 (reverse (unLoc $4)))
                  [mj AnnType $1,mj AnnRole $2] }

-- Reversed!
maybe_roles :: { Located [Located (Maybe FastString)] }
maybe_roles : {- empty -}    { noLoc [] }
            | roles          { $1 }

roles :: { Located [Located (Maybe FastString)] }
roles : role             { sLL $1 $> [$1] }
      | roles role       { sLL $1 $> $ $2 : unLoc $1 }

-- read it in as a varid for better error messages
role :: { Located (Maybe FastString) }
role : VARID             { sL1 $1 $ Just $ getVARID $1 }
     | '_'               { sL1 $1 Nothing }

-- Pattern synonyms

-- Glasgow extension: pattern synonyms
pattern_synonym_decl :: { LHsDecl RdrName }
        : 'pattern' pattern_synonym_lhs '=' pat
         {%      let (name, args,as ) = $2 in
                 ams (sLL $1 $> . ValD $ mkPatSynBind name args $4
                                                    ImplicitBidirectional)
               (as ++ [mj AnnPattern $1, mj AnnEqual $3])
         }

        | 'pattern' pattern_synonym_lhs '<-' pat
         {%    let (name, args, as) = $2 in
               ams (sLL $1 $> . ValD $ mkPatSynBind name args $4 Unidirectional)
               (as ++ [mj AnnPattern $1,mu AnnLarrow $3]) }

        | 'pattern' pattern_synonym_lhs '<-' pat where_decls
            {% do { let (name, args, as) = $2
                  ; mg <- mkPatSynMatchGroup name (snd $ unLoc $5)
                  ; ams (sLL $1 $> . ValD $
                           mkPatSynBind name args $4 (ExplicitBidirectional mg))
                       (as ++ ((mj AnnPattern $1:mu AnnLarrow $3:(fst $ unLoc $5))) )
                   }}

pattern_synonym_lhs :: { (Located RdrName, HsPatSynDetails (Located RdrName), [AddAnn]) }
        : con vars0 { ($1, PrefixPatSyn $2, []) }
        | varid conop varid { ($2, InfixPatSyn $1 $3, []) }
        | con '{' cvars1 '}' { ($1, RecordPatSyn $3, [moc $2, mcc $4] ) }

vars0 :: { [Located RdrName] }
        : {- empty -}                 { [] }
        | varid vars0                 { $1 : $2 }

cvars1 :: { [RecordPatSynField (Located RdrName)] }
       : varid                        { [RecordPatSynField $1 $1] }
       | varid ',' cvars1             {% addAnnotation (getLoc $1) AnnComma (getLoc $2) >>
                                         return ((RecordPatSynField $1 $1) : $3 )}

where_decls :: { Located ([AddAnn]
                         , Located (OrdList (LHsDecl RdrName))) }
        : 'where' '{' decls '}'       { sLL $1 $> ((mj AnnWhere $1:moc $2
                                           :mcc $4:(fst $ unLoc $3)),sL1 $3 (snd $ unLoc $3)) }
        | 'where' vocurly decls close { L (comb2 $1 $3) ((mj AnnWhere $1:(fst $ unLoc $3))
                                          ,sL1 $3 (snd $ unLoc $3)) }

pattern_synonym_sig :: { LSig RdrName }
        : 'pattern' con_list '::' sigtypedoc
                   {% ams (sLL $1 $> $ PatSynSig (unLoc $2) (mkLHsSigType $4))
                          [mj AnnPattern $1, mu AnnDcolon $3] }

-----------------------------------------------------------------------------
-- Nested declarations

-- Declaration in class bodies
--
decl_cls  :: { LHsDecl RdrName }
decl_cls  : at_decl_cls                 { $1 }
          | decl                        { $1 }

          -- A 'default' signature used with the generic-programming extension
          | 'default' infixexp '::' sigtypedoc
                    {% do { v <- checkValSigLhs $2
                          ; let err = text "in default signature" <> colon <+>
                                      quotes (ppr $2)
                          ; ams (sLL $1 $> $ SigD $ ClassOpSig True [v] $ mkLHsSigType $4)
                                [mj AnnDefault $1,mu AnnDcolon $3] } }

decls_cls :: { Located ([AddAnn],OrdList (LHsDecl RdrName)) }  -- Reversed
          : decls_cls ';' decl_cls      {% if isNilOL (snd $ unLoc $1)
                                             then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                                    , unitOL $3))
                                             else ams (lastOL (snd $ unLoc $1)) [mj AnnSemi $2]
                                           >> return (sLL $1 $> (fst $ unLoc $1
                                                                ,(snd $ unLoc $1) `appOL` unitOL $3)) }
          | decls_cls ';'               {% if isNilOL (snd $ unLoc $1)
                                             then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                                                   ,snd $ unLoc $1))
                                             else ams (lastOL (snd $ unLoc $1)) [mj AnnSemi $2]
                                           >> return (sLL $1 $>  (unLoc $1)) }
          | decl_cls                    { sL1 $1 ([], unitOL $1) }
          | {- empty -}                 { noLoc ([],nilOL) }

decllist_cls
        :: { Located ([AddAnn]
                     , OrdList (LHsDecl RdrName)) }      -- Reversed
        : '{'         decls_cls '}'     { sLL $1 $> (moc $1:mcc $3:(fst $ unLoc $2)
                                             ,snd $ unLoc $2) }
        |     vocurly decls_cls close   { $2 }

-- Class body
--
where_cls :: { Located ([AddAnn]
                       ,(OrdList (LHsDecl RdrName))) }    -- Reversed
                                -- No implicit parameters
                                -- May have type declarations
        : 'where' decllist_cls          { sLL $1 $> (mj AnnWhere $1:(fst $ unLoc $2)
                                             ,snd $ unLoc $2) }
        | {- empty -}                   { noLoc ([],nilOL) }

-- Declarations in instance bodies
--
decl_inst  :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst  : at_decl_inst               { sLL $1 $> (unitOL (sL1 $1 (InstD (unLoc $1)))) }
           | decl                       { sLL $1 $> (unitOL $1) }

decls_inst :: { Located ([AddAnn],OrdList (LHsDecl RdrName)) }   -- Reversed
           : decls_inst ';' decl_inst   {% if isNilOL (snd $ unLoc $1)
                                             then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                                    , unLoc $3))
                                             else ams (lastOL $ snd $ unLoc $1) [mj AnnSemi $2]
                                           >> return
                                            (sLL $1 $> (fst $ unLoc $1
                                                       ,(snd $ unLoc $1) `appOL` unLoc $3)) }
           | decls_inst ';'             {% if isNilOL (snd $ unLoc $1)
                                             then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                                                   ,snd $ unLoc $1))
                                             else ams (lastOL $ snd $ unLoc $1) [mj AnnSemi $2]
                                           >> return (sLL $1 $> (unLoc $1)) }
           | decl_inst                  { sL1 $1 ([],unLoc $1) }
           | {- empty -}                { noLoc ([],nilOL) }

decllist_inst
        :: { Located ([AddAnn]
                     , OrdList (LHsDecl RdrName)) }      -- Reversed
        : '{'         decls_inst '}'    { sLL $1 $> (moc $1:mcc $3:(fst $ unLoc $2),snd $ unLoc $2) }
        |     vocurly decls_inst close  { L (gl $2) (unLoc $2) }

-- Instance body
--
where_inst :: { Located ([AddAnn]
                        , OrdList (LHsDecl RdrName)) }   -- Reversed
                                -- No implicit parameters
                                -- May have type declarations
        : 'where' decllist_inst         { sLL $1 $> (mj AnnWhere $1:(fst $ unLoc $2)
                                             ,(snd $ unLoc $2)) }
        | {- empty -}                   { noLoc ([],nilOL) }

-- Declarations in binding groups other than classes and instances
--
decls   :: { Located ([AddAnn],OrdList (LHsDecl RdrName)) }
        : decls ';' decl    {% if isNilOL (snd $ unLoc $1)
                                 then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                        , unitOL $3))
                                 else do ams (lastOL $ snd $ unLoc $1) [mj AnnSemi $2]
                                           >> return (
                                          let { this = unitOL $3;
                                                rest = snd $ unLoc $1;
                                                these = rest `appOL` this }
                                          in rest `seq` this `seq` these `seq`
                                             (sLL $1 $> (fst $ unLoc $1,these))) }
        | decls ';'          {% if isNilOL (snd $ unLoc $1)
                                  then return (sLL $1 $> ((mj AnnSemi $2:(fst $ unLoc $1)
                                                          ,snd $ unLoc $1)))
                                  else ams (lastOL $ snd $ unLoc $1) [mj AnnSemi $2]
                                           >> return (sLL $1 $> (unLoc $1)) }
        | decl                          { sL1 $1 ([], unitOL $1) }
        | {- empty -}                   { noLoc ([],nilOL) }

decllist :: { Located ([AddAnn],Located (OrdList (LHsDecl RdrName))) }
        : '{'            decls '}'     { sLL $1 $> (moc $1:mcc $3:(fst $ unLoc $2)
                                                   ,sL1 $2 $ snd $ unLoc $2) }
        |     vocurly    decls close   { L (gl $2) (fst $ unLoc $2,sL1 $2 $ snd $ unLoc $2) }

-- Binding groups other than those of class and instance declarations
--
binds   ::  { Located ([AddAnn],Located (HsLocalBinds RdrName)) }
                                         -- May have implicit parameters
                                                -- No type declarations
        : decllist          {% do { val_binds <- cvBindGroup (unLoc $ snd $ unLoc $1)
                                  ; return (sL1 $1 (fst $ unLoc $1
                                                    ,sL1 $1 $ HsValBinds val_binds)) } }

        | '{'            dbinds '}'     { sLL $1 $> ([moc $1,mcc $3]
                                             ,sL1 $2 $ HsIPBinds (IPBinds (reverse $ unLoc $2)
                                                         emptyTcEvBinds)) }

        |     vocurly    dbinds close   { L (getLoc $2) ([]
                                            ,sL1 $2 $ HsIPBinds (IPBinds (reverse $ unLoc $2)
                                                        emptyTcEvBinds)) }


wherebinds :: { Located ([AddAnn],Located (HsLocalBinds RdrName)) }
                                                -- May have implicit parameters
                                                -- No type declarations
        : 'where' binds                 { sLL $1 $> (mj AnnWhere $1 : (fst $ unLoc $2)
                                             ,snd $ unLoc $2) }
        | {- empty -}                   { noLoc ([],noLoc emptyLocalBinds) }


-----------------------------------------------------------------------------
-- Transformation Rules

rules   :: { OrdList (LRuleDecl RdrName) }
        :  rules ';' rule              {% addAnnotation (oll $1) AnnSemi (gl $2)
                                          >> return ($1 `snocOL` $3) }
        |  rules ';'                   {% addAnnotation (oll $1) AnnSemi (gl $2)
                                          >> return $1 }
        |  rule                        { unitOL $1 }
        |  {- empty -}                 { nilOL }

rule    :: { LRuleDecl RdrName }
        : STRING rule_activation rule_forall infixexp '=' exp
         {%ams (sLL $1 $> $ (HsRule (L (gl $1) (getSTRINGs $1,getSTRING $1))
                                  ((snd $2) `orElse` AlwaysActive)
                                  (snd $3) $4 placeHolderNames $6
                                  placeHolderNames))
               (mj AnnEqual $5 : (fst $2) ++ (fst $3)) }

-- Rules can be specified to be NeverActive, unlike inline/specialize pragmas
rule_activation :: { ([AddAnn],Maybe Activation) }
        : {- empty -}                           { ([],Nothing) }
        | rule_explicit_activation              { (fst $1,Just (snd $1)) }

rule_explicit_activation :: { ([AddAnn]
                              ,Activation) }  -- In brackets
        : '[' INTEGER ']'       { ([mos $1,mj AnnVal $2,mcs $3]
                                  ,ActiveAfter  (getINTEGERs $2) (fromInteger (getINTEGER $2))) }
        | '[' '~' INTEGER ']'   { ([mos $1,mj AnnTilde $2,mj AnnVal $3,mcs $4]
                                  ,ActiveBefore (getINTEGERs $3) (fromInteger (getINTEGER $3))) }
        | '[' '~' ']'           { ([mos $1,mj AnnTilde $2,mcs $3]
                                  ,NeverActive) }

rule_forall :: { ([AddAnn],[LRuleBndr RdrName]) }
        : 'forall' rule_var_list '.'     { ([mu AnnForall $1,mj AnnDot $3],$2) }
        | {- empty -}                    { ([],[]) }

rule_var_list :: { [LRuleBndr RdrName] }
        : rule_var                              { [$1] }
        | rule_var rule_var_list                { $1 : $2 }

rule_var :: { LRuleBndr RdrName }
        : varid                         { sLL $1 $> (RuleBndr $1) }
        | '(' varid '::' ctype ')'      {% ams (sLL $1 $> (RuleBndrSig $2
                                                       (mkLHsSigWcType $4)))
                                               [mop $1,mu AnnDcolon $3,mcp $5] }

-----------------------------------------------------------------------------
-- Warnings and deprecations (c.f. rules)

warnings :: { OrdList (LWarnDecl RdrName) }
        : warnings ';' warning         {% addAnnotation (oll $1) AnnSemi (gl $2)
                                          >> return ($1 `appOL` $3) }
        | warnings ';'                 {% addAnnotation (oll $1) AnnSemi (gl $2)
                                          >> return $1 }
        | warning                      { $1 }
        | {- empty -}                  { nilOL }

-- SUP: TEMPORARY HACK, not checking for `module Foo'
warning :: { OrdList (LWarnDecl RdrName) }
        : namelist strings
                {% amsu (sLL $1 $> (Warning (unLoc $1) (WarningTxt (noLoc NoSourceText) $ snd $ unLoc $2)))
                     (fst $ unLoc $2) }

deprecations :: { OrdList (LWarnDecl RdrName) }
        : deprecations ';' deprecation
                                       {% addAnnotation (oll $1) AnnSemi (gl $2)
                                          >> return ($1 `appOL` $3) }
        | deprecations ';'             {% addAnnotation (oll $1) AnnSemi (gl $2)
                                          >> return $1 }
        | deprecation                  { $1 }
        | {- empty -}                  { nilOL }

-- SUP: TEMPORARY HACK, not checking for `module Foo'
deprecation :: { OrdList (LWarnDecl RdrName) }
        : namelist strings
             {% amsu (sLL $1 $> $ (Warning (unLoc $1) (DeprecatedTxt (noLoc NoSourceText) $ snd $ unLoc $2)))
                     (fst $ unLoc $2) }

strings :: { Located ([AddAnn],[Located StringLiteral]) }
    : STRING { sL1 $1 ([],[L (gl $1) (getStringLiteral $1)]) }
    | '[' stringlist ']' { sLL $1 $> $ ([mos $1,mcs $3],fromOL (unLoc $2)) }

stringlist :: { Located (OrdList (Located StringLiteral)) }
    : stringlist ',' STRING {% addAnnotation (oll $ unLoc $1) AnnComma (gl $2) >>
                               return (sLL $1 $> (unLoc $1 `snocOL`
                                                  (L (gl $3) (getStringLiteral $3)))) }
    | STRING                { sLL $1 $> (unitOL (L (gl $1) (getStringLiteral $1))) }
    | {- empty -}           { noLoc nilOL }

-----------------------------------------------------------------------------
-- Annotations
annotation :: { LHsDecl RdrName }
    : '{-# ANN' name_var aexp '#-}'      {% ams (sLL $1 $> (AnnD $ HsAnnotation
                                            (getANN_PRAGs $1)
                                            (ValueAnnProvenance $2) $3))
                                            [mo $1,mc $4] }

    | '{-# ANN' 'type' tycon aexp '#-}'  {% ams (sLL $1 $> (AnnD $ HsAnnotation
                                            (getANN_PRAGs $1)
                                            (TypeAnnProvenance $3) $4))
                                            [mo $1,mj AnnType $2,mc $5] }

    | '{-# ANN' 'module' aexp '#-}'      {% ams (sLL $1 $> (AnnD $ HsAnnotation
                                                (getANN_PRAGs $1)
                                                 ModuleAnnProvenance $3))
                                                [mo $1,mj AnnModule $2,mc $4] }


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { Located ([AddAnn],HsDecl RdrName) }
fdecl : 'import' callconv safety fspec
               {% mkImport $2 $3 (snd $ unLoc $4) >>= \i ->
                 return (sLL $1 $> (mj AnnImport $1 : (fst $ unLoc $4),i))  }
      | 'import' callconv        fspec
               {% do { d <- mkImport $2 (noLoc PlaySafe) (snd $ unLoc $3);
                    return (sLL $1 $> (mj AnnImport $1 : (fst $ unLoc $3),d)) }}
      | 'export' callconv fspec
               {% mkExport $2 (snd $ unLoc $3) >>= \i ->
                  return (sLL $1 $> (mj AnnExport $1 : (fst $ unLoc $3),i) ) }

callconv :: { Located CCallConv }
          : 'stdcall'                   { sLL $1 $> StdCallConv }
          | 'ccall'                     { sLL $1 $> CCallConv   }
          | 'capi'                      { sLL $1 $> CApiConv    }
          | 'prim'                      { sLL $1 $> PrimCallConv}
          | 'javascript'                { sLL $1 $> JavaScriptCallConv }

safety :: { Located Safety }
        : 'unsafe'                      { sLL $1 $> PlayRisky }
        | 'safe'                        { sLL $1 $> PlaySafe }
        | 'interruptible'               { sLL $1 $> PlayInterruptible }

fspec :: { Located ([AddAnn]
                    ,(Located StringLiteral, Located RdrName, LHsSigType RdrName)) }
       : STRING var '::' sigtypedoc     { sLL $1 $> ([mu AnnDcolon $3]
                                             ,(L (getLoc $1)
                                                    (getStringLiteral $1), $2, mkLHsSigType $4)) }
       |        var '::' sigtypedoc     { sLL $1 $> ([mu AnnDcolon $2]
                                             ,(noLoc (StringLiteral NoSourceText nilFS), $1, mkLHsSigType $3)) }
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { ([AddAnn], Maybe (LHsType RdrName)) }
        : {- empty -}                   { ([],Nothing) }
        | '::' sigtype                  { ([mu AnnDcolon $1],Just $2) }

opt_asig :: { ([AddAnn],Maybe (LHsType RdrName)) }
        : {- empty -}                   { ([],Nothing) }
        | '::' atype                    { ([mu AnnDcolon $1],Just $2) }

opt_tyconsig :: { ([AddAnn], Maybe (Located RdrName)) }
             : {- empty -}              { ([], Nothing) }
             | '::' gtycon              { ([mu AnnDcolon $1], Just $2) }

sigtype :: { LHsType RdrName }
        : ctype                            { $1 }

sigtypedoc :: { LHsType RdrName }
        : ctypedoc                         { $1 }


sig_vars :: { Located [Located RdrName] }    -- Returned in reversed order
         : sig_vars ',' var           {% addAnnotation (gl $ head $ unLoc $1)
                                                       AnnComma (gl $2)
                                         >> return (sLL $1 $> ($3 : unLoc $1)) }
         | var                        { sL1 $1 [$1] }

sigtypes1 :: { (OrdList (LHsSigType RdrName)) }
   : sigtype                 { unitOL (mkLHsSigType $1) }
   | sigtype ',' sigtypes1   {% addAnnotation (gl $1) AnnComma (gl $2)
                                >> return (unitOL (mkLHsSigType $1) `appOL` $3) }

-----------------------------------------------------------------------------
-- Types

strict_mark :: { Located ([AddAnn],HsSrcBang) }
        : strictness { sL1 $1 (let (a, str) = unLoc $1 in (a, HsSrcBang NoSourceText NoSrcUnpack str)) }
        | unpackedness { sL1 $1 (let (a, prag, unpk) = unLoc $1 in (a, HsSrcBang prag unpk NoSrcStrict)) }
        | unpackedness strictness { sLL $1 $> (let { (a, prag, unpk) = unLoc $1
                                                   ; (a', str) = unLoc $2 }
                                                in (a ++ a', HsSrcBang prag unpk str)) }
        -- Although UNPACK with no '!' without StrictData and UNPACK with '~' are illegal,
        -- we get a better error message if we parse them here

strictness :: { Located ([AddAnn], SrcStrictness) }
        : '!' { sL1 $1 ([mj AnnBang $1], SrcStrict) }
        | '~' { sL1 $1 ([mj AnnTilde $1], SrcLazy) }

unpackedness :: { Located ([AddAnn], SourceText, SrcUnpackedness) }
        : '{-# UNPACK' '#-}'   { sLL $1 $> ([mo $1, mc $2], getUNPACK_PRAGs $1, SrcUnpack) }
        | '{-# NOUNPACK' '#-}' { sLL $1 $> ([mo $1, mc $2], getNOUNPACK_PRAGs $1, SrcNoUnpack) }

-- A ctype is a for-all type
ctype   :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctype   {% hintExplicitForall (getLoc $1) >>
                                           ams (sLL $1 $> $
                                                HsForAllTy { hst_bndrs = $2
                                                           , hst_body = $4 })
                                               [mu AnnForall $1, mj AnnDot $3] }
        | context '=>' ctype          {% addAnnotation (gl $1) (toUnicodeAnn AnnDarrow $2) (gl $2)
                                         >> return (sLL $1 $> $
                                            HsQualTy { hst_ctxt = $1
                                                     , hst_body = $3 }) }
        | ipvar '::' type             {% ams (sLL $1 $> (HsIParamTy $1 $3))
                                             [mu AnnDcolon $2] }
        | type                        { $1 }

----------------------
-- Notes for 'ctypedoc'
-- It would have been nice to simplify the grammar by unifying `ctype` and
-- ctypedoc` into one production, allowing comments on types everywhere (and
-- rejecting them after parsing, where necessary).  This is however not possible
-- since it leads to ambiguity. The reason is the support for comments on record
-- fields:
--         data R = R { field :: Int -- ^ comment on the field }
-- If we allow comments on types here, it's not clear if the comment applies
-- to 'field' or to 'Int'. So we must use `ctype` to describe the type.

ctypedoc :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc {% hintExplicitForall (getLoc $1) >>
                                            ams (sLL $1 $> $
                                                 HsForAllTy { hst_bndrs = $2
                                                            , hst_body = $4 })
                                                [mu AnnForall $1,mj AnnDot $3] }
        | context '=>' ctypedoc       {% addAnnotation (gl $1) (toUnicodeAnn AnnDarrow $2) (gl $2)
                                         >> return (sLL $1 $> $
                                            HsQualTy { hst_ctxt = $1
                                                     , hst_body = $3 }) }
        | ipvar '::' type             {% ams (sLL $1 $> (HsIParamTy $1 $3))
                                             [mu AnnDcolon $2] }
        | typedoc                     { $1 }

----------------------
-- Notes for 'context'
-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--      (Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>

-- We have the t1 ~ t2 form both in 'context' and in type,
-- to permit an individual equational constraint without parenthesis.
-- Thus for some reason we allow    f :: a~b => blah
-- but not                          f :: ?x::Int => blah
-- See Note [Parsing ~]
context :: { LHsContext RdrName }
        :  btype                        {% do { (anns,ctx) <- checkContext $1
                                                ; if null (unLoc ctx)
                                                   then addAnnotation (gl $1) AnnUnit (gl $1)
                                                   else return ()
                                                ; ams ctx anns
                                                } }

context_no_ops :: { LHsContext RdrName }
        : btype_no_ops                 {% do { ty <- splitTilde $1
                                             ; (anns,ctx) <- checkContext ty
                                             ; if null (unLoc ctx)
                                                   then addAnnotation (gl ty) AnnUnit (gl ty)
                                                   else return ()
                                             ; ams ctx anns
                                             } }

{- Note [GADT decl discards annotations]
~~~~~~~~~~~~~~~~~~~~~
The type production for

    btype `->` btype

adds the AnnRarrow annotation twice, in different places.

This is because if the type is processed as usual, it belongs on the annotations
for the type as a whole.

But if the type is passed to mkGadtDecl, it discards the top level SrcSpan, and
the top-level annotation will be disconnected. Hence for this specific case it
is connected to the first type too.
-}

type :: { LHsType RdrName }
        : btype                        { $1 }
        | btype '->' ctype             {% ams $1 [mu AnnRarrow $2] -- See note [GADT decl discards annotations]
                                       >> ams (sLL $1 $> $ HsFunTy $1 $3)
                                              [mu AnnRarrow $2] }


typedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btype docprev                  { sLL $1 $> $ HsDocTy $1 $2 }
        | btype '->'     ctypedoc        {% ams (sLL $1 $> $ HsFunTy $1 $3)
                                                [mu AnnRarrow $2] }
        | btype docprev '->' ctypedoc    {% ams (sLL $1 $> $
                                                 HsFunTy (L (comb2 $1 $2) (HsDocTy $1 $2))
                                                         $4)
                                                [mu AnnRarrow $3] }

-- See Note [Parsing ~]
btype :: { LHsType RdrName }
        : tyapps                      {%  splitTildeApps (reverse (unLoc $1)) >>=
                                          \ts -> return $ sL1 $1 $ HsAppsTy ts }

-- Used for parsing Haskell98-style data constructors,
-- in order to forbid the blasphemous
-- > data Foo = Int :+ Char :* Bool
-- See also Note [Parsing data constructors is hard] in RdrHsSyn
btype_no_ops :: { LHsType RdrName }
        : btype_no_ops atype            { sLL $1 $> $ HsAppTy $1 $2 }
        | atype                         { $1 }

tyapps :: { Located [LHsAppType RdrName] }   -- NB: This list is reversed
        : tyapp                         { sL1 $1 [$1] }
        | tyapps tyapp                  { sLL $1 $> $ $2 : (unLoc $1) }

-- See Note [HsAppsTy] in HsTypes
tyapp :: { LHsAppType RdrName }
        : atype                         { sL1 $1 $ HsAppPrefix $1 }
        | qtyconop                      { sL1 $1 $ HsAppInfix $1 }
        | tyvarop                       { sL1 $1 $ HsAppInfix $1 }
        | SIMPLEQUOTE qconop            {% ams (sLL $1 $> $ HsAppInfix $2)
                                               [mj AnnSimpleQuote $1] }
        | SIMPLEQUOTE varop             {% ams (sLL $1 $> $ HsAppInfix $2)
                                               [mj AnnSimpleQuote $1] }

atype :: { LHsType RdrName }
        : ntgtycon                       { sL1 $1 (HsTyVar NotPromoted $1) }      -- Not including unit tuples
        | tyvar                          { sL1 $1 (HsTyVar NotPromoted $1) }      -- (See Note [Unit tuples])
        | strict_mark atype              {% ams (sLL $1 $> (HsBangTy (snd $ unLoc $1) $2))
                                                (fst $ unLoc $1) }  -- Constructor sigs only
        | '{' fielddecls '}'             {% amms (checkRecordSyntax
                                                    (sLL $1 $> $ HsRecTy $2))
                                                        -- Constructor sigs only
                                                 [moc $1,mcc $3] }
        | '(' ')'                        {% ams (sLL $1 $> $ HsTupleTy
                                                    HsBoxedOrConstraintTuple [])
                                                [mop $1,mcp $2] }
        | '(' ctype ',' comma_types1 ')' {% addAnnotation (gl $2) AnnComma
                                                          (gl $3) >>
                                            ams (sLL $1 $> $ HsTupleTy
                                             HsBoxedOrConstraintTuple ($2 : $4))
                                                [mop $1,mcp $5] }
        | '(#' '#)'                   {% ams (sLL $1 $> $ HsTupleTy HsUnboxedTuple [])
                                             [mo $1,mc $2] }
        | '(#' comma_types1 '#)'      {% ams (sLL $1 $> $ HsTupleTy HsUnboxedTuple $2)
                                             [mo $1,mc $3] }
        | '(#' bar_types2 '#)'        {% ams (sLL $1 $> $ HsSumTy $2)
                                             [mo $1,mc $3] }
        | '[' ctype ']'               {% ams (sLL $1 $> $ HsListTy  $2) [mos $1,mcs $3] }
        | '[:' ctype ':]'             {% ams (sLL $1 $> $ HsPArrTy  $2) [mo $1,mc $3] }
        | '(' ctype ')'               {% ams (sLL $1 $> $ HsParTy   $2) [mop $1,mcp $3] }
        | '(' ctype '::' kind ')'     {% ams (sLL $1 $> $ HsKindSig $2 $4)
                                             [mop $1,mu AnnDcolon $3,mcp $5] }
        | quasiquote                  { sL1 $1 (HsSpliceTy (unLoc $1) placeHolderKind) }
        | '$(' exp ')'                {% ams (sLL $1 $> $ mkHsSpliceTy HasParens $2)
                                             [mj AnnOpenPE $1,mj AnnCloseP $3] }
        | TH_ID_SPLICE                {%ams (sLL $1 $> $ mkHsSpliceTy HasDollar $ sL1 $1 $ HsVar $
                                             (sL1 $1 (mkUnqual varName (getTH_ID_SPLICE $1))))
                                             [mj AnnThIdSplice $1] }
                                      -- see Note [Promotion] for the followings
        | SIMPLEQUOTE qcon_nowiredlist {% ams (sLL $1 $> $ HsTyVar Promoted $2) [mj AnnSimpleQuote $1,mj AnnName $2] }
        | SIMPLEQUOTE  '(' ctype ',' comma_types1 ')'
                             {% addAnnotation (gl $3) AnnComma (gl $4) >>
                                ams (sLL $1 $> $ HsExplicitTupleTy [] ($3 : $5))
                                    [mj AnnSimpleQuote $1,mop $2,mcp $6] }
        | SIMPLEQUOTE  '[' comma_types0 ']'     {% ams (sLL $1 $> $ HsExplicitListTy Promoted
                                                            placeHolderKind $3)
                                                       [mj AnnSimpleQuote $1,mos $2,mcs $4] }
        | SIMPLEQUOTE var                       {% ams (sLL $1 $> $ HsTyVar Promoted $2)
                                                       [mj AnnSimpleQuote $1,mj AnnName $2] }

        -- Two or more [ty, ty, ty] must be a promoted list type, just as
        -- if you had written '[ty, ty, ty]
        -- (One means a list type, zero means the list type constructor,
        -- so you have to quote those.)
        | '[' ctype ',' comma_types1 ']'  {% addAnnotation (gl $2) AnnComma
                                                           (gl $3) >>
                                             ams (sLL $1 $> $ HsExplicitListTy NotPromoted
                                                     placeHolderKind ($2 : $4))
                                                 [mos $1,mcs $5] }
        | INTEGER              { sLL $1 $> $ HsTyLit $ HsNumTy (getINTEGERs $1)
                                                               (getINTEGER $1) }
        | STRING               { sLL $1 $> $ HsTyLit $ HsStrTy (getSTRINGs $1)
                                                               (getSTRING  $1) }
        | '_'                  { sL1 $1 $ mkAnonWildCardTy }

-- An inst_type is what occurs in the head of an instance decl
--      e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type for convenience.
inst_type :: { LHsSigType RdrName }
        : sigtype                       { mkLHsSigType $1 }

deriv_types :: { [LHsSigType RdrName] }
        : typedoc                       { [mkLHsSigType $1] }

        | typedoc ',' deriv_types       {% addAnnotation (gl $1) AnnComma (gl $2)
                                           >> return (mkLHsSigType $1 : $3) }

comma_types0  :: { [LHsType RdrName] }  -- Zero or more:  ty,ty,ty
        : comma_types1                  { $1 }
        | {- empty -}                   { [] }

comma_types1    :: { [LHsType RdrName] }  -- One or more:  ty,ty,ty
        : ctype                        { [$1] }
        | ctype  ',' comma_types1      {% addAnnotation (gl $1) AnnComma (gl $2)
                                          >> return ($1 : $3) }

bar_types2    :: { [LHsType RdrName] }  -- Two or more:  ty|ty|ty
        : ctype  '|' ctype             {% addAnnotation (gl $1) AnnVbar (gl $2)
                                          >> return [$1,$3] }
        | ctype  '|' bar_types2        {% addAnnotation (gl $1) AnnVbar (gl $2)
                                          >> return ($1 : $3) }

tv_bndrs :: { [LHsTyVarBndr RdrName] }
         : tv_bndr tv_bndrs             { $1 : $2 }
         | {- empty -}                  { [] }

tv_bndr :: { LHsTyVarBndr RdrName }
        : tyvar                         { sL1 $1 (UserTyVar $1) }
        | '(' tyvar '::' kind ')'       {% ams (sLL $1 $>  (KindedTyVar $2 $4))
                                               [mop $1,mu AnnDcolon $3
                                               ,mcp $5] }

fds :: { Located ([AddAnn],[Located (FunDep (Located RdrName))]) }
        : {- empty -}                   { noLoc ([],[]) }
        | '|' fds1                      { (sLL $1 $> ([mj AnnVbar $1]
                                                 ,reverse (unLoc $2))) }

fds1 :: { Located [Located (FunDep (Located RdrName))] }
        : fds1 ',' fd   {% addAnnotation (gl $ head $ unLoc $1) AnnComma (gl $2)
                           >> return (sLL $1 $> ($3 : unLoc $1)) }
        | fd            { sL1 $1 [$1] }

fd :: { Located (FunDep (Located RdrName)) }
        : varids0 '->' varids0  {% ams (L (comb3 $1 $2 $3)
                                       (reverse (unLoc $1), reverse (unLoc $3)))
                                       [mu AnnRarrow $2] }

varids0 :: { Located [Located RdrName] }
        : {- empty -}                   { noLoc [] }
        | varids0 tyvar                 { sLL $1 $> ($2 : unLoc $1) }

{-
Note [Parsing ~]
~~~~~~~~~~~~~~~~

Due to parsing conflicts between laziness annotations in data type
declarations (see strict_mark) and equality types ~'s are always
parsed as laziness annotations, and turned into HsEqTy's in the
correct places using RdrHsSyn.splitTilde.

Since strict_mark is parsed as part of atype which is part of type,
typedoc and context (where HsEqTy previously appeared) it made most
sense and was simplest to parse ~ as part of strict_mark and later
turn them into HsEqTy's.

-}


-----------------------------------------------------------------------------
-- Kinds

kind :: { LHsKind RdrName }
        : ctype                  { $1 }

{- Note [Promotion]
   ~~~~~~~~~~~~~~~~

- Syntax of promoted qualified names
We write 'Nat.Zero instead of Nat.'Zero when dealing with qualified
names. Moreover ticks are only allowed in types, not in kinds, for a
few reasons:
  1. we don't need quotes since we cannot define names in kinds
  2. if one day we merge types and kinds, tick would mean look in DataName
  3. we don't have a kind namespace anyway

- Name resolution
When the user write Zero instead of 'Zero in types, we parse it a
HsTyVar ("Zero", TcClsName) instead of HsTyVar ("Zero", DataName). We
deal with this in the renamer. If a HsTyVar ("Zero", TcClsName) is not
bounded in the type level, then we look for it in the term level (we
change its namespace to DataName, see Note [Demotion] in OccName). And
both become a HsTyVar ("Zero", DataName) after the renamer.

-}


-----------------------------------------------------------------------------
-- Datatype declarations

gadt_constrlist :: { Located ([AddAnn]
                          ,[LConDecl RdrName]) } -- Returned in order
        : 'where' '{'        gadt_constrs '}'   { L (comb2 $1 $3)
                                                    ([mj AnnWhere $1
                                                     ,moc $2
                                                     ,mcc $4]
                                                    , unLoc $3) }
        | 'where' vocurly    gadt_constrs close  { L (comb2 $1 $3)
                                                     ([mj AnnWhere $1]
                                                     , unLoc $3) }
        | {- empty -}                            { noLoc ([],[]) }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constr_with_doc ';' gadt_constrs
                  {% addAnnotation (gl $1) AnnSemi (gl $2)
                     >> return (L (comb2 $1 $3) ($1 : unLoc $3)) }
        | gadt_constr_with_doc          { L (gl $1) [$1] }
        | {- empty -}                   { noLoc [] }

-- We allow the following forms:
--      C :: Eq a => a -> T a
--      C :: forall a. Eq a => !a -> T a
--      D { x,y :: a } :: T a
--      forall a. Eq a => D { x,y :: a } :: T a

gadt_constr_with_doc :: { LConDecl RdrName }
gadt_constr_with_doc
        : maybe_docnext ';' gadt_constr
                {% return $ addConDoc $3 $1 }
        | gadt_constr
                {% return $1 }

gadt_constr :: { LConDecl RdrName }
    -- see Note [Difference in parsing GADT and data constructors]
    -- Returns a list because of:   C,D :: ty
        : con_list '::' sigtype
                {% ams (sLL $1 $> (mkGadtDecl (unLoc $1) (mkLHsSigType $3)))
                       [mu AnnDcolon $2] }

{- Note [Difference in parsing GADT and data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GADT constructors have simpler syntax than usual data constructors:
in GADTs, types cannot occur to the left of '::', so they cannot be mixed
with constructor names (see Note [Parsing data constructors is hard]).

Due to simplified syntax, GADT constructor names (left-hand side of '::')
use simpler grammar production than usual data constructor names. As a
consequence, GADT constructor names are resticted (names like '(*)' are
allowed in usual data constructors, but not in GADTs).
-}

constrs :: { Located ([AddAnn],[LConDecl RdrName]) }
        : maybe_docnext '=' constrs1    { L (comb2 $2 $3) ([mj AnnEqual $2]
                                                     ,addConDocs (unLoc $3) $1)}

constrs1 :: { Located [LConDecl RdrName] }
        : constrs1 maybe_docnext '|' maybe_docprev constr
            {% addAnnotation (gl $ head $ unLoc $1) AnnVbar (gl $3)
               >> return (sLL $1 $> (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4)) }
        | constr                                          { sL1 $1 [$1] }

constr :: { LConDecl RdrName }
        : maybe_docnext forall context_no_ops '=>' constr_stuff maybe_docprev
                {% ams (let (con,details) = unLoc $5 in
                  addConDoc (L (comb4 $2 $3 $4 $5) (mkConDeclH98 con
                                                   (snd $ unLoc $2) $3 details))
                            ($1 `mplus` $6))
                        (mu AnnDarrow $4:(fst $ unLoc $2)) }
        | maybe_docnext forall constr_stuff maybe_docprev
                {% ams ( let (con,details) = unLoc $3 in
                  addConDoc (L (comb2 $2 $3) (mkConDeclH98 con
                                           (snd $ unLoc $2) (noLoc []) details))
                            ($1 `mplus` $4))
                       (fst $ unLoc $2) }

forall :: { Located ([AddAnn], Maybe [LHsTyVarBndr RdrName]) }
        : 'forall' tv_bndrs '.'       { sLL $1 $> ([mu AnnForall $1,mj AnnDot $3], Just $2) }
        | {- empty -}                 { noLoc ([], Nothing) }

constr_stuff :: { Located (Located RdrName, HsConDeclDetails RdrName) }
    -- See Note [Parsing data constructors is hard] in RdrHsSyn
        : btype_no_ops                         {% do { c <- splitCon $1
                                                     ; return $ sLL $1 $> c } }
        | btype_no_ops conop btype_no_ops      {% do { ty <- splitTilde $1
                                                     ; return $ sLL $1 $> ($2, InfixCon ty $3) } }

fielddecls :: { [LConDeclField RdrName] }
        : {- empty -}     { [] }
        | fielddecls1     { $1 }

fielddecls1 :: { [LConDeclField RdrName] }
        : fielddecl maybe_docnext ',' maybe_docprev fielddecls1
            {% addAnnotation (gl $1) AnnComma (gl $3) >>
               return ((addFieldDoc $1 $4) : addFieldDocs $5 $2) }
        | fielddecl   { [$1] }

fielddecl :: { LConDeclField RdrName }
                                              -- A list because of   f,g :: Int
        : maybe_docnext sig_vars '::' ctype maybe_docprev
            {% ams (L (comb2 $2 $4)
                      (ConDeclField (reverse (map (\ln@(L l n) -> L l $ FieldOcc ln PlaceHolder) (unLoc $2))) $4 ($1 `mplus` $5)))
                   [mu AnnDcolon $3] }

-- Reversed!
maybe_derivings :: { HsDeriving RdrName }
        : {- empty -}             { noLoc [] }
        | derivings               { $1 }

-- A list of one or more deriving clauses at the end of a datatype
derivings :: { HsDeriving RdrName }
        : derivings deriving      { sLL $1 $> $ $2 : unLoc $1 }
        | deriving                { sLL $1 $> [$1] }

-- The outer Located is just to allow the caller to
-- know the rightmost extremity of the 'deriving' clause
deriving :: { LHsDerivingClause RdrName }
        : 'deriving' deriv_strategy qtycondoc
              {% let { full_loc = comb2 $1 $> }
                 in ams (L full_loc $ HsDerivingClause $2 $ L full_loc
                            [mkLHsSigType $3])
                        [mj AnnDeriving $1] }

        | 'deriving' deriv_strategy '(' ')'
              {% let { full_loc = comb2 $1 $> }
                 in ams (L full_loc $ HsDerivingClause $2 $ L full_loc [])
                        [mj AnnDeriving $1,mop $3,mcp $4] }

        | 'deriving' deriv_strategy '(' deriv_types ')'
              {% let { full_loc = comb2 $1 $> }
                 in ams (L full_loc $ HsDerivingClause $2 $ L full_loc $4)
                        [mj AnnDeriving $1,mop $3,mcp $5] }
             -- Glasgow extension: allow partial
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- Note [Declaration/signature overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There's an awkward overlap with a type signature.  Consider
        f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:

     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
                                     qvar allowed (because of instance decls)

  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

docdecl :: { LHsDecl RdrName }
        : docdecld { sL1 $1 (DocD (unLoc $1)) }

docdecld :: { LDocDecl }
        : docnext                               { sL1 $1 (DocCommentNext (unLoc $1)) }
        | docprev                               { sL1 $1 (DocCommentPrev (unLoc $1)) }
        | docnamed                              { sL1 $1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
        | docsection                            { sL1 $1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }

decl_no_th :: { LHsDecl RdrName }
        : sigdecl               { $1 }

        | '!' aexp rhs          {% do { let { e = sLL $1 $2 (SectionR (sL1 $1 (HsVar (sL1 $1 bang_RDR))) $2)
                                              -- Turn it all into an expression so that
                                              -- checkPattern can check that bangs are enabled
                                            ; l = comb2 $1 $> };
                                        (ann, r) <- checkValDef empty SrcStrict e Nothing $3 ;
                                        -- Depending upon what the pattern looks like we might get either
                                        -- a FunBind or PatBind back from checkValDef. See Note
                                        -- [Varieties of binding pattern matches]
                                        case r of {
                                          (FunBind n _ _ _ _) ->
                                                ams (L l ()) [mj AnnFunId n] >> return () ;
                                          (PatBind (L lh _lhs) _rhs _ _ _) ->
                                                ams (L lh ()) [] >> return () } ;

                                        _ <- ams (L l ()) (ann ++ fst (unLoc $3) ++ [mj AnnBang $1]) ;
                                        return $! (sL l $ ValD r) } }

        | infixexp_top opt_sig rhs  {% do { (ann,r) <- checkValDef empty NoSrcStrict $1 (snd $2) $3;
                                        let { l = comb2 $1 $> };
                                        -- Depending upon what the pattern looks like we might get either
                                        -- a FunBind or PatBind back from checkValDef. See Note
                                        -- [Varieties of binding pattern matches]
                                        case r of {
                                          (FunBind n _ _ _ _) ->
                                                ams (L l ()) (mj AnnFunId n:(fst $2)) >> return () ;
                                          (PatBind (L lh _lhs) _rhs _ _ _) ->
                                                ams (L lh ()) (fst $2) >> return () } ;
                                        _ <- ams (L l ()) (ann ++ (fst $ unLoc $3));
                                        return $! (sL l $ ValD r) } }
        | pattern_synonym_decl  { $1 }
        | docdecl               { $1 }

decl    :: { LHsDecl RdrName }
        : decl_no_th            { $1 }

        -- Why do we only allow naked declaration splices in top-level
        -- declarations and not here? Short answer: because readFail009
        -- fails terribly with a panic in cvBindsAndSigs otherwise.
        | splice_exp            { sLL $1 $> $ mkSpliceDecl $1 }

rhs     :: { Located ([AddAnn],GRHSs RdrName (LHsExpr RdrName)) }
        : '=' exp wherebinds    { sL (comb3 $1 $2 $3)
                                    ((mj AnnEqual $1 : (fst $ unLoc $3))
                                    ,GRHSs (unguardedRHS (comb3 $1 $2 $3) $2)
                                   (snd $ unLoc $3)) }
        | gdrhs wherebinds      { sLL $1 $>  (fst $ unLoc $2
                                    ,GRHSs (reverse (unLoc $1))
                                                    (snd $ unLoc $2)) }

gdrhs :: { Located [LGRHS RdrName (LHsExpr RdrName)] }
        : gdrhs gdrh            { sLL $1 $> ($2 : unLoc $1) }
        | gdrh                  { sL1 $1 [$1] }

gdrh :: { LGRHS RdrName (LHsExpr RdrName) }
        : '|' guardquals '=' exp  {% ams (sL (comb2 $1 $>) $ GRHS (unLoc $2) $4)
                                         [mj AnnVbar $1,mj AnnEqual $3] }

sigdecl :: { LHsDecl RdrName }
        :
        -- See Note [Declaration/signature overlap] for why we need infixexp here
          infixexp_top '::' sigtypedoc
                        {% do v <- checkValSigLhs $1
                        ; _ <- ams (sLL $1 $> ()) [mu AnnDcolon $2]
                        ; return (sLL $1 $> $ SigD $
                                  TypeSig [v] (mkLHsSigWcType $3)) }

        | var ',' sig_vars '::' sigtypedoc
           {% do { let sig = TypeSig ($1 : reverse (unLoc $3))
                                     (mkLHsSigWcType $5)
                 ; addAnnotation (gl $1) AnnComma (gl $2)
                 ; ams ( sLL $1 $> $ SigD sig )
                       [mu AnnDcolon $4] } }

        | infix prec ops
              {% ams (sLL $1 $> $ SigD
                        (FixSig (FixitySig (fromOL $ unLoc $3)
                                (Fixity (fst $ unLoc $2) (snd $ unLoc $2) (unLoc $1)))))
                     [mj AnnInfix $1,mj AnnVal $2] }

        | pattern_synonym_sig   { sLL $1 $> . SigD . unLoc $ $1 }

        | '{-# COMPLETE' con_list opt_tyconsig  '#-}'
                {% let (dcolon, tc) = $3
                   in ams
                       (sLL $1 $>
                         (SigD (CompleteMatchSig (getCOMPLETE_PRAGs $1) $2 tc)))
                    ([ mo $1 ] ++ dcolon ++ [mc $4]) }

        -- This rule is for both INLINE and INLINABLE pragmas
        | '{-# INLINE' activation qvar '#-}'
                {% ams ((sLL $1 $> $ SigD (InlineSig $3
                            (mkInlinePragma (getINLINE_PRAGs $1) (getINLINE $1)
                                            (snd $2)))))
                       ((mo $1:fst $2) ++ [mc $4]) }

        | '{-# SCC' qvar '#-}'
          {% ams (sLL $1 $> (SigD (SCCFunSig (getSCC_PRAGs $1) $2 Nothing)))
                 [mo $1, mc $3] }

        | '{-# SCC' qvar STRING '#-}'
          {% do { scc <- getSCC $3
                ; let str_lit = StringLiteral (getSTRINGs $3) scc
                ; ams (sLL $1 $> (SigD (SCCFunSig (getSCC_PRAGs $1) $2 (Just ( sL1 $3 str_lit)))))
                      [mo $1, mc $4] } }

        | '{-# SPECIALISE' activation qvar '::' sigtypes1 '#-}'
             {% ams (
                 let inl_prag = mkInlinePragma (getSPEC_PRAGs $1)
                                             (EmptyInlineSpec, FunLike) (snd $2)
                  in sLL $1 $> $ SigD (SpecSig $3 (fromOL $5) inl_prag))
                    (mo $1:mu AnnDcolon $4:mc $6:(fst $2)) }

        | '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
             {% ams (sLL $1 $> $ SigD (SpecSig $3 (fromOL $5)
                               (mkInlinePragma (getSPEC_INLINE_PRAGs $1)
                                               (getSPEC_INLINE $1) (snd $2))))
                       (mo $1:mu AnnDcolon $4:mc $6:(fst $2)) }

        | '{-# SPECIALISE' 'instance' inst_type '#-}'
                {% ams (sLL $1 $>
                                  $ SigD (SpecInstSig (getSPEC_PRAGs $1) $3))
                       [mo $1,mj AnnInstance $2,mc $4] }

        -- A minimal complete definition
        | '{-# MINIMAL' name_boolformula_opt '#-}'
            {% ams (sLL $1 $> $ SigD (MinimalSig (getMINIMAL_PRAGs $1) $2))
                   [mo $1,mc $3] }

activation :: { ([AddAnn],Maybe Activation) }
        : {- empty -}                           { ([],Nothing) }
        | explicit_activation                   { (fst $1,Just (snd $1)) }

explicit_activation :: { ([AddAnn],Activation) }  -- In brackets
        : '[' INTEGER ']'       { ([mj AnnOpenS $1,mj AnnVal $2,mj AnnCloseS $3]
                                  ,ActiveAfter  (getINTEGERs $2) (fromInteger (getINTEGER $2))) }
        | '[' '~' INTEGER ']'   { ([mj AnnOpenS $1,mj AnnTilde $2,mj AnnVal $3
                                                 ,mj AnnCloseS $4]
                                  ,ActiveBefore (getINTEGERs $3) (fromInteger (getINTEGER $3))) }

-----------------------------------------------------------------------------
-- Expressions

quasiquote :: { Located (HsSplice RdrName) }
        : TH_QUASIQUOTE   { let { loc = getLoc $1
                                ; ITquasiQuote (quoter, quote, quoteSpan) = unLoc $1
                                ; quoterId = mkUnqual varName quoter }
                            in sL1 $1 (mkHsQuasiQuote quoterId (RealSrcSpan quoteSpan) quote) }
        | TH_QQUASIQUOTE  { let { loc = getLoc $1
                                ; ITqQuasiQuote (qual, quoter, quote, quoteSpan) = unLoc $1
                                ; quoterId = mkQual varName (qual, quoter) }
                            in sL (getLoc $1) (mkHsQuasiQuote quoterId (RealSrcSpan quoteSpan) quote) }

exp   :: { LHsExpr RdrName }
        : infixexp '::' sigtype {% ams (sLL $1 $> $ ExprWithTySig $1 (mkLHsSigWcType $3))
                                       [mu AnnDcolon $2] }
        | infixexp '-<' exp     {% ams (sLL $1 $> $ HsArrApp $1 $3 placeHolderType
                                                        HsFirstOrderApp True)
                                       [mu Annlarrowtail $2] }
        | infixexp '>-' exp     {% ams (sLL $1 $> $ HsArrApp $3 $1 placeHolderType
                                                      HsFirstOrderApp False)
                                       [mu Annrarrowtail $2] }
        | infixexp '-<<' exp    {% ams (sLL $1 $> $ HsArrApp $1 $3 placeHolderType
                                                      HsHigherOrderApp True)
                                       [mu AnnLarrowtail $2] }
        | infixexp '>>-' exp    {% ams (sLL $1 $> $ HsArrApp $3 $1 placeHolderType
                                                      HsHigherOrderApp False)
                                       [mu AnnRarrowtail $2] }
        | infixexp              { $1 }

infixexp :: { LHsExpr RdrName }
        : exp10 { $1 }
        | infixexp qop exp10  {% ams (sLL $1 $> (OpApp $1 $2 placeHolderFixity $3))
                                     [mj AnnVal $2] }
                 -- AnnVal annotation for NPlusKPat, which discards the operator

infixexp_top :: { LHsExpr RdrName }
        : exp10_top               { $1 }
        | infixexp_top qop exp10_top
                                  {% ams (sLL $1 $> (OpApp $1 $2 placeHolderFixity $3))
                                         [mj AnnVal $2] }

exp10_top :: { LHsExpr RdrName }
        : '\\' apat apats opt_asig '->' exp
                   {% ams (sLL $1 $> $ HsLam (mkMatchGroup FromSource
                            [sLL $1 $> $ Match { m_ctxt = LambdaExpr
                                               , m_pats = $2:$3
                                               , m_type = snd $4
                                               , m_grhss = unguardedGRHSs $6 }]))
                          (mj AnnLam $1:mu AnnRarrow $5:(fst $4)) }

        | 'let' binds 'in' exp          {% ams (sLL $1 $> $ HsLet (snd $ unLoc $2) $4)
                                               (mj AnnLet $1:mj AnnIn $3
                                                 :(fst $ unLoc $2)) }
        | '\\' 'lcase' altslist
            {% ams (sLL $1 $> $ HsLamCase
                                   (mkMatchGroup FromSource (snd $ unLoc $3)))
                   (mj AnnLam $1:mj AnnCase $2:(fst $ unLoc $3)) }
        | 'if' exp optSemi 'then' exp optSemi 'else' exp
                           {% checkDoAndIfThenElse $2 (snd $3) $5 (snd $6) $8 >>
                              ams (sLL $1 $> $ mkHsIf $2 $5 $8)
                                  (mj AnnIf $1:mj AnnThen $4
                                     :mj AnnElse $7
                                     :(map (\l -> mj AnnSemi l) (fst $3))
                                    ++(map (\l -> mj AnnSemi l) (fst $6))) }
        | 'if' ifgdpats                 {% hintMultiWayIf (getLoc $1) >>
                                           ams (sLL $1 $> $ HsMultiIf
                                                     placeHolderType
                                                     (reverse $ snd $ unLoc $2))
                                               (mj AnnIf $1:(fst $ unLoc $2)) }
        | 'case' exp 'of' altslist      {% ams (sLL $1 $> $ HsCase $2 (mkMatchGroup
                                                   FromSource (snd $ unLoc $4)))
                                               (mj AnnCase $1:mj AnnOf $3
                                                  :(fst $ unLoc $4)) }
        | '-' fexp                      {% ams (sLL $1 $> $ NegApp $2 noSyntaxExpr)
                                               [mj AnnMinus $1] }

        | 'do' stmtlist              {% ams (L (comb2 $1 $2)
                                               (mkHsDo DoExpr (snd $ unLoc $2)))
                                               (mj AnnDo $1:(fst $ unLoc $2)) }
        | 'mdo' stmtlist            {% ams (L (comb2 $1 $2)
                                              (mkHsDo MDoExpr (snd $ unLoc $2)))
                                           (mj AnnMdo $1:(fst $ unLoc $2)) }

        | hpc_annot exp        {% ams (sLL $1 $> $ HsTickPragma (snd $ fst $ fst $ unLoc $1)
                                                                (snd $ fst $ unLoc $1) (snd $ unLoc $1) $2)
                                      (fst $ fst $ fst $ unLoc $1) }

        | 'proc' aexp '->' exp
                       {% checkPattern empty $2 >>= \ p ->
                           checkCommand $4 >>= \ cmd ->
                           ams (sLL $1 $> $ HsProc p (sLL $1 $> $ HsCmdTop cmd placeHolderType
                                                placeHolderType []))
                                            -- TODO: is LL right here?
                               [mj AnnProc $1,mu AnnRarrow $3] }

        | '{-# CORE' STRING '#-}' exp  {% ams (sLL $1 $> $ HsCoreAnn (getCORE_PRAGs $1) (getStringLiteral $2) $4)
                                              [mo $1,mj AnnVal $2
                                              ,mc $3] }
                                          -- hdaume: core annotation
        | fexp                         { $1 }

exp10 :: { LHsExpr RdrName }
        : exp10_top            { $1 }
        | scc_annot exp        {% ams (sLL $1 $> $ HsSCC (snd $ fst $ unLoc $1) (snd $ unLoc $1) $2)
                                      (fst $ fst $ unLoc $1) }

optSemi :: { ([Located a],Bool) }
        : ';'         { ([$1],True) }
        | {- empty -} { ([],False) }

scc_annot :: { Located (([AddAnn],SourceText),StringLiteral) }
        : '{-# SCC' STRING '#-}'      {% do scc <- getSCC $2
                                            ; return $ sLL $1 $>
                                               (([mo $1,mj AnnValStr $2
                                                ,mc $3],getSCC_PRAGs $1),(StringLiteral (getSTRINGs $2) scc)) }
        | '{-# SCC' VARID  '#-}'      { sLL $1 $> (([mo $1,mj AnnVal $2
                                         ,mc $3],getSCC_PRAGs $1)
                                        ,(StringLiteral NoSourceText (getVARID $2))) }

hpc_annot :: { Located ( (([AddAnn],SourceText),(StringLiteral,(Int,Int),(Int,Int))),
                         ((SourceText,SourceText),(SourceText,SourceText))
                       ) }
      : '{-# GENERATED' STRING INTEGER ':' INTEGER '-' INTEGER ':' INTEGER '#-}'
                                      { sLL $1 $> $ ((([mo $1,mj AnnVal $2
                                              ,mj AnnVal $3,mj AnnColon $4
                                              ,mj AnnVal $5,mj AnnMinus $6
                                              ,mj AnnVal $7,mj AnnColon $8
                                              ,mj AnnVal $9,mc $10],
                                                getGENERATED_PRAGs $1)
                                              ,((getStringLiteral $2)
                                               ,( fromInteger $ getINTEGER $3
                                                , fromInteger $ getINTEGER $5
                                                )
                                               ,( fromInteger $ getINTEGER $7
                                                , fromInteger $ getINTEGER $9
                                                )
                                               ))
                                             , (( getINTEGERs $3
                                                , getINTEGERs $5
                                                )
                                               ,( getINTEGERs $7
                                                , getINTEGERs $9
                                                )))
                                         }

fexp    :: { LHsExpr RdrName }
        : fexp aexp                  { sLL $1 $> $ HsApp $1 $2 }
        | fexp TYPEAPP atype         {% ams (sLL $1 $> $ HsAppType $1 (mkHsWildCardBndrs $3))
                                            [mj AnnAt $2] }
        | 'static' aexp              {% ams (sLL $1 $> $ HsStatic placeHolderNames $2)
                                            [mj AnnStatic $1] }
        | aexp                       { $1 }

aexp    :: { LHsExpr RdrName }
        : qvar '@' aexp         {% ams (sLL $1 $> $ EAsPat $1 $3) [mj AnnAt $2] }
            -- If you change the parsing, make sure to understand
            -- Note [Lexing type applications] in Lexer.x

        | '~' aexp              {% ams (sLL $1 $> $ ELazyPat $2) [mj AnnTilde $1] }
        | aexp1                 { $1 }

aexp1   :: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' {% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4)
                                                                   (snd $3)
                                     ; _ <- ams (sLL $1 $> ()) (moc $2:mcc $4:(fst $3))
                                     ; checkRecordSyntax (sLL $1 $> r) }}
        | aexp2                { $1 }

aexp2   :: { LHsExpr RdrName }
        : qvar                          { sL1 $1 (HsVar   $! $1) }
        | qcon                          { sL1 $1 (HsVar   $! $1) }
        | ipvar                         { sL1 $1 (HsIPVar $! unLoc $1) }
        | overloaded_label              { sL1 $1 (HsOverLabel Nothing $! unLoc $1) }
        | literal                       { sL1 $1 (HsLit   $! unLoc $1) }
-- This will enable overloaded strings permanently.  Normally the renamer turns HsString
-- into HsOverLit when -foverloaded-strings is on.
--      | STRING    { sL (getLoc $1) (HsOverLit $! mkHsIsString (getSTRINGs $1)
--                                       (getSTRING $1) placeHolderType) }
        | INTEGER   { sL (getLoc $1) (HsOverLit $! mkHsIntegral (getINTEGERs $1)
                                         (getINTEGER $1) placeHolderType) }
        | RATIONAL  { sL (getLoc $1) (HsOverLit $! mkHsFractional
                                          (getRATIONAL $1) placeHolderType) }

        -- N.B.: sections get parsed by these next two productions.
        -- This allows you to write, e.g., '(+ 3, 4 -)', which isn't
        -- correct Haskell (you'd have to write '((+ 3), (4 -))')
        -- but the less cluttered version fell out of having texps.
        | '(' texp ')'                  {% ams (sLL $1 $> (HsPar $2)) [mop $1,mcp $3] }
        | '(' tup_exprs ')'             {% do { e <- mkSumOrTuple Boxed (comb2 $1 $3) (snd $2)
                                              ; ams (sLL $1 $> e) ((mop $1:fst $2) ++ [mcp $3]) } }

        | '(#' texp '#)'                {% ams (sLL $1 $> (ExplicitTuple [L (gl $2)
                                                         (Present $2)] Unboxed))
                                               [mo $1,mc $3] }
        | '(#' tup_exprs '#)'           {% do { e <- mkSumOrTuple Unboxed (comb2 $1 $3) (snd $2)
                                              ; ams (sLL $1 $> e) ((mo $1:fst $2) ++ [mc $3]) } }

        | '[' list ']'      {% ams (sLL $1 $> (snd $2)) (mos $1:mcs $3:(fst $2)) }
        | '[:' parr ':]'    {% ams (sLL $1 $> (snd $2)) (mo $1:mc $3:(fst $2)) }
        | '_'               { sL1 $1 EWildPat }

        -- Template Haskell Extension
        | splice_exp            { $1 }

        | SIMPLEQUOTE  qvar     {% ams (sLL $1 $> $ HsBracket (VarBr True  (unLoc $2))) [mj AnnSimpleQuote $1,mj AnnName $2] }
        | SIMPLEQUOTE  qcon     {% ams (sLL $1 $> $ HsBracket (VarBr True  (unLoc $2))) [mj AnnSimpleQuote $1,mj AnnName $2] }
        | TH_TY_QUOTE tyvar     {% ams (sLL $1 $> $ HsBracket (VarBr False (unLoc $2))) [mj AnnThTyQuote $1,mj AnnName $2] }
        | TH_TY_QUOTE gtycon    {% ams (sLL $1 $> $ HsBracket (VarBr False (unLoc $2))) [mj AnnThTyQuote $1,mj AnnName $2] }
        | '[|' exp '|]'       {% ams (sLL $1 $> $ HsBracket (ExpBr $2))
                                      (if (hasE $1) then [mj AnnOpenE $1, mu AnnCloseQ $3]
                                                    else [mu AnnOpenEQ $1,mu AnnCloseQ $3]) }
        | '[||' exp '||]'     {% ams (sLL $1 $> $ HsBracket (TExpBr $2))
                                      (if (hasE $1) then [mj AnnOpenE $1,mc $3] else [mo $1,mc $3]) }
        | '[t|' ctype '|]'    {% ams (sLL $1 $> $ HsBracket (TypBr $2)) [mo $1,mu AnnCloseQ $3] }
        | '[p|' infixexp '|]' {% checkPattern empty $2 >>= \p ->
                                      ams (sLL $1 $> $ HsBracket (PatBr p))
                                          [mo $1,mu AnnCloseQ $3] }
        | '[d|' cvtopbody '|]' {% ams (sLL $1 $> $ HsBracket (DecBrL (snd $2)))
                                      (mo $1:mu AnnCloseQ $3:fst $2) }
        | quasiquote          { sL1 $1 (HsSpliceE (unLoc $1)) }

        -- arrow notation extension
        | '(|' aexp2 cmdargs '|)'  {% ams (sLL $1 $> $ HsArrForm $2
                                                           Nothing (reverse $3))
                                          [mu AnnOpenB $1,mu AnnCloseB $4] }

splice_exp :: { LHsExpr RdrName }
        : TH_ID_SPLICE          {% ams (sL1 $1 $ mkHsSpliceE HasDollar
                                        (sL1 $1 $ HsVar (sL1 $1 (mkUnqual varName
                                                           (getTH_ID_SPLICE $1)))))
                                       [mj AnnThIdSplice $1] }
        | '$(' exp ')'          {% ams (sLL $1 $> $ mkHsSpliceE HasParens $2)
                                       [mj AnnOpenPE $1,mj AnnCloseP $3] }
        | TH_ID_TY_SPLICE       {% ams (sL1 $1 $ mkHsSpliceTE HasDollar
                                        (sL1 $1 $ HsVar (sL1 $1 (mkUnqual varName
                                                        (getTH_ID_TY_SPLICE $1)))))
                                       [mj AnnThIdTySplice $1] }
        | '$$(' exp ')'         {% ams (sLL $1 $> $ mkHsSpliceTE HasParens $2)
                                       [mj AnnOpenPTE $1,mj AnnCloseP $3] }

cmdargs :: { [LHsCmdTop RdrName] }
        : cmdargs acmd                  { $2 : $1 }
        | {- empty -}                   { [] }

acmd    :: { LHsCmdTop RdrName }
        : aexp2                 {% checkCommand $1 >>= \ cmd ->
                                    return (sL1 $1 $ HsCmdTop cmd
                                           placeHolderType placeHolderType []) }

cvtopbody :: { ([AddAnn],[LHsDecl RdrName]) }
        :  '{'            cvtopdecls0 '}'      { ([mj AnnOpenC $1
                                                  ,mj AnnCloseC $3],$2) }
        |      vocurly    cvtopdecls0 close    { ([],$2) }

cvtopdecls0 :: { [LHsDecl RdrName] }
        : topdecls_semi         { cvTopDecls $1 }
        | topdecls              { cvTopDecls $1 }

-----------------------------------------------------------------------------
-- Tuple expressions

-- "texp" is short for tuple expressions:
-- things that can appear unparenthesized as long as they're
-- inside parens or delimitted by commas
texp :: { LHsExpr RdrName }
        : exp                           { $1 }

        -- Note [Parsing sections]
        -- ~~~~~~~~~~~~~~~~~~~~~~~
        -- We include left and right sections here, which isn't
        -- technically right according to the Haskell standard.
        -- For example (3 +, True) isn't legal.
        -- However, we want to parse bang patterns like
        --      (!x, !y)
        -- and it's convenient to do so here as a section
        -- Then when converting expr to pattern we unravel it again
        -- Meanwhile, the renamer checks that real sections appear
        -- inside parens.
        | infixexp qop        { sLL $1 $> $ SectionL $1 $2 }
        | qopm infixexp       { sLL $1 $> $ SectionR $1 $2 }

       -- View patterns get parenthesized above
        | exp '->' texp   {% ams (sLL $1 $> $ EViewPat $1 $3) [mu AnnRarrow $2] }

-- Always at least one comma or bar.
tup_exprs :: { ([AddAnn],SumOrTuple) }
           : texp commas_tup_tail
                          {% do { addAnnotation (gl $1) AnnComma (fst $2)
                                ; return ([],Tuple ((sL1 $1 (Present $1)) : snd $2)) } }

           | texp bars    { (mvbars (fst $2), Sum 1  (snd $2 + 1) $1) }

           | commas tup_tail
                {% do { mapM_ (\ll -> addAnnotation ll AnnComma ll) (fst $1)
                      ; return
                           ([],Tuple (map (\l -> L l missingTupArg) (fst $1) ++ $2)) } }

           | bars texp bars0
                { (mvbars (fst $1) ++ mvbars (fst $3), Sum (snd $1 + 1) (snd $1 + snd $3 + 1) $2) }

-- Always starts with commas; always follows an expr
commas_tup_tail :: { (SrcSpan,[LHsTupArg RdrName]) }
commas_tup_tail : commas tup_tail
       {% do { mapM_ (\ll -> addAnnotation ll AnnComma ll) (tail $ fst $1)
             ; return (
            (head $ fst $1
            ,(map (\l -> L l missingTupArg) (tail $ fst $1)) ++ $2)) } }

-- Always follows a comma
tup_tail :: { [LHsTupArg RdrName] }
          : texp commas_tup_tail {% addAnnotation (gl $1) AnnComma (fst $2) >>
                                    return ((L (gl $1) (Present $1)) : snd $2) }
          | texp                 { [L (gl $1) (Present $1)] }
          | {- empty -}          { [noLoc missingTupArg] }

-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.
list :: { ([AddAnn],HsExpr RdrName) }
        : texp    { ([],ExplicitList placeHolderType Nothing [$1]) }
        | lexps   { ([],ExplicitList placeHolderType Nothing
                                                   (reverse (unLoc $1))) }
        | texp '..'             { ([mj AnnDotdot $2],
                                      ArithSeq noPostTcExpr Nothing (From $1)) }
        | texp ',' exp '..'     { ([mj AnnComma $2,mj AnnDotdot $4],
                                  ArithSeq noPostTcExpr Nothing
                                                             (FromThen $1 $3)) }
        | texp '..' exp         { ([mj AnnDotdot $2],
                                   ArithSeq noPostTcExpr Nothing
                                                               (FromTo $1 $3)) }
        | texp ',' exp '..' exp { ([mj AnnComma $2,mj AnnDotdot $4],
                                    ArithSeq noPostTcExpr Nothing
                                                (FromThenTo $1 $3 $5)) }
        | texp '|' flattenedpquals
             {% checkMonadComp >>= \ ctxt ->
                return ([mj AnnVbar $2],
                        mkHsComp ctxt (unLoc $3) $1) }

lexps :: { Located [LHsExpr RdrName] }
        : lexps ',' texp          {% addAnnotation (gl $ head $ unLoc $1)
                                                            AnnComma (gl $2) >>
                                      return (sLL $1 $> (((:) $! $3) $! unLoc $1)) }
        | texp ',' texp            {% addAnnotation (gl $1) AnnComma (gl $2) >>
                                      return (sLL $1 $> [$3,$1]) }

-----------------------------------------------------------------------------
-- List Comprehensions

flattenedpquals :: { Located [LStmt RdrName (LHsExpr RdrName)] }
    : pquals   { case (unLoc $1) of
                    [qs] -> sL1 $1 qs
                    -- We just had one thing in our "parallel" list so
                    -- we simply return that thing directly

                    qss -> sL1 $1 [sL1 $1 $ ParStmt [ParStmtBlock qs [] noSyntaxExpr |
                                            qs <- qss]
                                            noExpr noSyntaxExpr placeHolderType]
                    -- We actually found some actual parallel lists so
                    -- we wrap them into as a ParStmt
                }

pquals :: { Located [[LStmt RdrName (LHsExpr RdrName)]] }
    : squals '|' pquals
                     {% addAnnotation (gl $ head $ unLoc $1) AnnVbar (gl $2) >>
                        return (sLL $1 $> (reverse (unLoc $1) : unLoc $3)) }
    | squals         { L (getLoc $1) [reverse (unLoc $1)] }

squals :: { Located [LStmt RdrName (LHsExpr RdrName)] }   -- In reverse order, because the last
                                        -- one can "grab" the earlier ones
    : squals ',' transformqual
             {% addAnnotation (gl $ head $ unLoc $1) AnnComma (gl $2) >>
                ams (sLL $1 $> ()) (fst $ unLoc $3) >>
                return (sLL $1 $> [sLL $1 $> ((snd $ unLoc $3) (reverse (unLoc $1)))]) }
    | squals ',' qual
             {% addAnnotation (gl $ head $ unLoc $1) AnnComma (gl $2) >>
                return (sLL $1 $> ($3 : unLoc $1)) }
    | transformqual        {% ams $1 (fst $ unLoc $1) >>
                              return (sLL $1 $> [L (getLoc $1) ((snd $ unLoc $1) [])]) }
    | qual                                { sL1 $1 [$1] }
--  | transformquals1 ',' '{|' pquals '|}'   { sLL $1 $> ($4 : unLoc $1) }
--  | '{|' pquals '|}'                       { sL1 $1 [$2] }

-- It is possible to enable bracketing (associating) qualifier lists
-- by uncommenting the lines with {| |} above. Due to a lack of
-- consensus on the syntax, this feature is not being used until we
-- get user demand.

transformqual :: { Located ([AddAnn],[LStmt RdrName (LHsExpr RdrName)] -> Stmt RdrName (LHsExpr RdrName)) }
                        -- Function is applied to a list of stmts *in order*
    : 'then' exp               { sLL $1 $> ([mj AnnThen $1], \ss -> (mkTransformStmt ss $2)) }
    | 'then' exp 'by' exp      { sLL $1 $> ([mj AnnThen $1,mj AnnBy  $3],\ss -> (mkTransformByStmt ss $2 $4)) }
    | 'then' 'group' 'using' exp
             { sLL $1 $> ([mj AnnThen $1,mj AnnGroup $2,mj AnnUsing $3], \ss -> (mkGroupUsingStmt ss $4)) }

    | 'then' 'group' 'by' exp 'using' exp
             { sLL $1 $> ([mj AnnThen $1,mj AnnGroup $2,mj AnnBy $3,mj AnnUsing $5], \ss -> (mkGroupByUsingStmt ss $4 $6)) }

-- Note that 'group' is a special_id, which means that you can enable
-- TransformListComp while still using Data.List.group. However, this
-- introduces a shift/reduce conflict. Happy chooses to resolve the conflict
-- in by choosing the "group by" variant, which is what we want.

-----------------------------------------------------------------------------
-- Parallel array expressions

-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).

parr :: { ([AddAnn],HsExpr RdrName) }
        :                      { ([],ExplicitPArr placeHolderType []) }
        | texp                 { ([],ExplicitPArr placeHolderType [$1]) }
        | lexps                { ([],ExplicitPArr placeHolderType
                                                          (reverse (unLoc $1))) }
        | texp '..' exp        { ([mj AnnDotdot $2]
                                 ,PArrSeq noPostTcExpr (FromTo $1 $3)) }
        | texp ',' exp '..' exp
                        { ([mj AnnComma $2,mj AnnDotdot $4]
                          ,PArrSeq noPostTcExpr (FromThenTo $1 $3 $5)) }
        | texp '|' flattenedpquals
                        { ([mj AnnVbar $2],mkHsComp PArrComp (unLoc $3) $1) }

-- We are reusing `lexps' and `flattenedpquals' from the list case.

-----------------------------------------------------------------------------
-- Guards

guardquals :: { Located [LStmt RdrName (LHsExpr RdrName)] }
    : guardquals1           { L (getLoc $1) (reverse (unLoc $1)) }

guardquals1 :: { Located [LStmt RdrName (LHsExpr RdrName)] }
    : guardquals1 ',' qual  {% addAnnotation (gl $ head $ unLoc $1) AnnComma
                                             (gl $2) >>
                               return (sLL $1 $> ($3 : unLoc $1)) }
    | qual                  { sL1 $1 [$1] }

-----------------------------------------------------------------------------
-- Case alternatives

altslist :: { Located ([AddAnn],[LMatch RdrName (LHsExpr RdrName)]) }
        : '{'            alts '}'  { sLL $1 $> ((moc $1:mcc $3:(fst $ unLoc $2))
                                               ,(reverse (snd $ unLoc $2))) }
        |     vocurly    alts  close { L (getLoc $2) (fst $ unLoc $2
                                        ,(reverse (snd $ unLoc $2))) }
        | '{'                 '}'    { noLoc ([moc $1,mcc $2],[]) }
        |     vocurly          close { noLoc ([],[]) }

alts    :: { Located ([AddAnn],[LMatch RdrName (LHsExpr RdrName)]) }
        : alts1                    { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
        | ';' alts                 { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2))
                                               ,snd $ unLoc $2) }

alts1   :: { Located ([AddAnn],[LMatch RdrName (LHsExpr RdrName)]) }
        : alts1 ';' alt         {% if null (snd $ unLoc $1)
                                     then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                  ,[$3]))
                                     else (ams (head $ snd $ unLoc $1)
                                               (mj AnnSemi $2:(fst $ unLoc $1))
                                           >> return (sLL $1 $> ([],$3 : (snd $ unLoc $1))) ) }
        | alts1 ';'             {% if null (snd $ unLoc $1)
                                     then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                  ,snd $ unLoc $1))
                                     else (ams (head $ snd $ unLoc $1)
                                               (mj AnnSemi $2:(fst $ unLoc $1))
                                           >> return (sLL $1 $> ([],snd $ unLoc $1))) }
        | alt                   { sL1 $1 ([],[$1]) }

alt     :: { LMatch RdrName (LHsExpr RdrName) }
        : pat opt_asig alt_rhs  {%ams (sLL $1 $> (Match { m_ctxt = CaseAlt
                                                        , m_pats = [$1]
                                                        , m_type = snd $2
                                                        , m_grhss = snd $ unLoc $3 }))
                                      (fst $2 ++ (fst $ unLoc $3))}

alt_rhs :: { Located ([AddAnn],GRHSs RdrName (LHsExpr RdrName)) }
        : ralt wherebinds           { sLL $1 $> (fst $ unLoc $2,
                                            GRHSs (unLoc $1) (snd $ unLoc $2)) }

ralt :: { Located [LGRHS RdrName (LHsExpr RdrName)] }
        : '->' exp            {% ams (sLL $1 $> (unguardedRHS (comb2 $1 $2) $2))
                                     [mu AnnRarrow $1] }
        | gdpats              { sL1 $1 (reverse (unLoc $1)) }

gdpats :: { Located [LGRHS RdrName (LHsExpr RdrName)] }
        : gdpats gdpat                  { sLL $1 $> ($2 : unLoc $1) }
        | gdpat                         { sL1 $1 [$1] }

-- layout for MultiWayIf doesn't begin with an open brace, because it's hard to
-- generate the open brace in addition to the vertical bar in the lexer, and
-- we don't need it.
ifgdpats :: { Located ([AddAnn],[LGRHS RdrName (LHsExpr RdrName)]) }
         : '{' gdpats '}'                 { sLL $1 $> ([moc $1,mcc $3],unLoc $2)  }
         |     gdpats close               { sL1 $1 ([],unLoc $1) }

gdpat   :: { LGRHS RdrName (LHsExpr RdrName) }
        : '|' guardquals '->' exp
                                  {% ams (sL (comb2 $1 $>) $ GRHS (unLoc $2) $4)
                                         [mj AnnVbar $1,mu AnnRarrow $3] }

-- 'pat' recognises a pattern, including one with a bang at the top
--      e.g.  "!x" or "!(x,y)" or "C a b" etc
-- Bangs inside are parsed as infix operator applications, so that
-- we parse them right when bang-patterns are off
pat     :: { LPat RdrName }
pat     :  exp          {% checkPattern empty $1 }
        | '!' aexp      {% amms (checkPattern empty (sLL $1 $> (SectionR
                                                     (sL1 $1 (HsVar (sL1 $1 bang_RDR))) $2)))
                                [mj AnnBang $1] }

bindpat :: { LPat RdrName }
bindpat :  exp            {% checkPattern
                                (text "Possibly caused by a missing 'do'?") $1 }
        | '!' aexp        {% amms (checkPattern
                                     (text "Possibly caused by a missing 'do'?")
                                     (sLL $1 $> (SectionR (sL1 $1 (HsVar (sL1 $1 bang_RDR))) $2)))
                                  [mj AnnBang $1] }

apat   :: { LPat RdrName }
apat    : aexp                  {% checkPattern empty $1 }
        | '!' aexp              {% amms (checkPattern empty
                                            (sLL $1 $> (SectionR
                                                (sL1 $1 (HsVar (sL1 $1 bang_RDR))) $2)))
                                        [mj AnnBang $1] }

apats  :: { [LPat RdrName] }
        : apat apats            { $1 : $2 }
        | {- empty -}           { [] }

-----------------------------------------------------------------------------
-- Statement sequences

stmtlist :: { Located ([AddAnn],[LStmt RdrName (LHsExpr RdrName)]) }
        : '{'           stmts '}'       { sLL $1 $> ((moc $1:mcc $3:(fst $ unLoc $2))
                                             ,(reverse $ snd $ unLoc $2)) } -- AZ:performance of reverse?
        |     vocurly   stmts close     { L (gl $2) (fst $ unLoc $2
                                                    ,reverse $ snd $ unLoc $2) }

--      do { ;; s ; s ; ; s ;; }
-- The last Stmt should be an expression, but that's hard to enforce
-- here, because we need too much lookahead if we see do { e ; }
-- So we use BodyStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead

stmts :: { Located ([AddAnn],[LStmt RdrName (LHsExpr RdrName)]) }
        : stmts ';' stmt  {% if null (snd $ unLoc $1)
                              then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1)
                                                     ,$3 : (snd $ unLoc $1)))
                              else do
                               { ams (head $ snd $ unLoc $1) [mj AnnSemi $2]
                               ; return $ sLL $1 $> (fst $ unLoc $1,$3 :(snd $ unLoc $1)) }}

        | stmts ';'     {% if null (snd $ unLoc $1)
                             then return (sLL $1 $> (mj AnnSemi $2:(fst $ unLoc $1),snd $ unLoc $1))
                             else do
                               { ams (head $ snd $ unLoc $1)
                                               [mj AnnSemi $2]
                               ; return $1 } }
        | stmt                   { sL1 $1 ([],[$1]) }
        | {- empty -}            { noLoc ([],[]) }


-- For typing stmts at the GHCi prompt, where
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName (LHsExpr RdrName)) }
        : stmt                          { Just $1 }
        | {- nothing -}                 { Nothing }

stmt  :: { LStmt RdrName (LHsExpr RdrName) }
        : qual                          { $1 }
        | 'rec' stmtlist                {% ams (sLL $1 $> $ mkRecStmt (snd $ unLoc $2))
                                               (mj AnnRec $1:(fst $ unLoc $2)) }

qual  :: { LStmt RdrName (LHsExpr RdrName) }
    : bindpat '<-' exp                  {% ams (sLL $1 $> $ mkBindStmt $1 $3)
                                               [mu AnnLarrow $2] }
    | exp                               { sL1 $1 $ mkBodyStmt $1 }
    | 'let' binds                       {% ams (sLL $1 $>$ LetStmt (snd $ unLoc $2))
                                               (mj AnnLet $1:(fst $ unLoc $2)) }

-----------------------------------------------------------------------------
-- Record Field Update/Construction

fbinds  :: { ([AddAnn],([LHsRecField RdrName (LHsExpr RdrName)], Bool)) }
        : fbinds1                       { $1 }
        | {- empty -}                   { ([],([], False)) }

fbinds1 :: { ([AddAnn],([LHsRecField RdrName (LHsExpr RdrName)], Bool)) }
        : fbind ',' fbinds1
                {% addAnnotation (gl $1) AnnComma (gl $2) >>
                   return (case $3 of (ma,(flds, dd)) -> (ma,($1 : flds, dd))) }
        | fbind                         { ([],([$1], False)) }
        | '..'                          { ([mj AnnDotdot $1],([],   True)) }

fbind   :: { LHsRecField RdrName (LHsExpr RdrName) }
        : qvar '=' texp {% ams  (sLL $1 $> $ HsRecField (sL1 $1 $ mkFieldOcc $1) $3 False)
                                [mj AnnEqual $2] }
                        -- RHS is a 'texp', allowing view patterns (Trac #6038)
                        -- and, incidentally, sections.  Eg
                        -- f (R { x = show -> s }) = ...

        | qvar          { sLL $1 $> $ HsRecField (sL1 $1 $ mkFieldOcc $1) placeHolderPunRhs True }
                        -- In the punning case, use a place-holder
                        -- The renamer fills in the final value

-----------------------------------------------------------------------------
-- Implicit Parameter Bindings

dbinds  :: { Located [LIPBind RdrName] }
        : dbinds ';' dbind
                      {% addAnnotation (gl $ last $ unLoc $1) AnnSemi (gl $2) >>
                         return (let { this = $3; rest = unLoc $1 }
                              in rest `seq` this `seq` sLL $1 $> (this : rest)) }
        | dbinds ';'  {% addAnnotation (gl $ last $ unLoc $1) AnnSemi (gl $2) >>
                         return (sLL $1 $> (unLoc $1)) }
        | dbind                        { let this = $1 in this `seq` sL1 $1 [this] }
--      | {- empty -}                  { [] }

dbind   :: { LIPBind RdrName }
dbind   : ipvar '=' exp                {% ams (sLL $1 $> (IPBind (Left $1) $3))
                                              [mj AnnEqual $2] }

ipvar   :: { Located HsIPName }
        : IPDUPVARID            { sL1 $1 (HsIPName (getIPDUPVARID $1)) }

-----------------------------------------------------------------------------
-- Overloaded labels

overloaded_label :: { Located FastString }
        : LABELVARID          { sL1 $1 (getLABELVARID $1) }

-----------------------------------------------------------------------------
-- Warnings and deprecations

name_boolformula_opt :: { LBooleanFormula (Located RdrName) }
        : name_boolformula          { $1 }
        | {- empty -}               { noLoc mkTrue }

name_boolformula :: { LBooleanFormula (Located RdrName) }
        : name_boolformula_and                      { $1 }
        | name_boolformula_and '|' name_boolformula
                           {% aa $1 (AnnVbar, $2)
                              >> return (sLL $1 $> (Or [$1,$3])) }

name_boolformula_and :: { LBooleanFormula (Located RdrName) }
        : name_boolformula_and_list
                  { sLL (head $1) (last $1) (And ($1)) }

name_boolformula_and_list :: { [LBooleanFormula (Located RdrName)] }
        : name_boolformula_atom                               { [$1] }
        | name_boolformula_atom ',' name_boolformula_and_list
            {% aa $1 (AnnComma, $2) >> return ($1 : $3) }

name_boolformula_atom :: { LBooleanFormula (Located RdrName) }
        : '(' name_boolformula ')'  {% ams (sLL $1 $> (Parens $2)) [mop $1,mcp $3] }
        | name_var                  { sL1 $1 (Var $1) }

namelist :: { Located [Located RdrName] }
namelist : name_var              { sL1 $1 [$1] }
         | name_var ',' namelist {% addAnnotation (gl $1) AnnComma (gl $2) >>
                                    return (sLL $1 $> ($1 : unLoc $3)) }

name_var :: { Located RdrName }
name_var : var { $1 }
         | con { $1 }

-----------------------------------------
-- Data constructors
-- There are two different productions here as lifted list constructors
-- are parsed differently.

qcon_nowiredlist :: { Located RdrName }
        : gen_qcon                     { $1 }
        | sysdcon_nolist               { sL1 $1 $ nameRdrName (dataConName (unLoc $1)) }

qcon :: { Located RdrName }
  : gen_qcon              { $1}
  | sysdcon               { sL1 $1 $ nameRdrName (dataConName (unLoc $1)) }

gen_qcon :: { Located RdrName }
  : qconid                { $1 }
  | '(' qconsym ')'       {% ams (sLL $1 $> (unLoc $2))
                                   [mop $1,mj AnnVal $2,mcp $3] }

-- The case of '[:' ':]' is part of the production `parr'

con     :: { Located RdrName }
        : conid                 { $1 }
        | '(' consym ')'        {% ams (sLL $1 $> (unLoc $2))
                                       [mop $1,mj AnnVal $2,mcp $3] }
        | sysdcon               { sL1 $1 $ nameRdrName (dataConName (unLoc $1)) }

con_list :: { Located [Located RdrName] }
con_list : con                  { sL1 $1 [$1] }
         | con ',' con_list     {% addAnnotation (gl $1) AnnComma (gl $2) >>
                                   return (sLL $1 $> ($1 : unLoc $3)) }

sysdcon_nolist :: { Located DataCon }  -- Wired in data constructors
        : '(' ')'               {% ams (sLL $1 $> unitDataCon) [mop $1,mcp $2] }
        | '(' commas ')'        {% ams (sLL $1 $> $ tupleDataCon Boxed (snd $2 + 1))
                                       (mop $1:mcp $3:(mcommas (fst $2))) }
        | '(#' '#)'             {% ams (sLL $1 $> $ unboxedUnitDataCon) [mo $1,mc $2] }
        | '(#' commas '#)'      {% ams (sLL $1 $> $ tupleDataCon Unboxed (snd $2 + 1))
                                       (mo $1:mc $3:(mcommas (fst $2))) }

sysdcon :: { Located DataCon }
        : sysdcon_nolist                 { $1 }
        | '[' ']'               {% ams (sLL $1 $> nilDataCon) [mos $1,mcs $2] }

conop :: { Located RdrName }
        : consym                { $1 }
        | '`' conid '`'         {% ams (sLL $1 $> (unLoc $2))
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }

qconop :: { Located RdrName }
        : qconsym               { $1 }
        | '`' qconid '`'        {% ams (sLL $1 $> (unLoc $2))
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }

----------------------------------------------------------------------------
-- Type constructors


-- See Note [Unit tuples] in HsTypes for the distinction
-- between gtycon and ntgtycon
gtycon :: { Located RdrName }  -- A "general" qualified tycon, including unit tuples
        : ntgtycon                     { $1 }
        | '(' ')'                      {% ams (sLL $1 $> $ getRdrName unitTyCon)
                                              [mop $1,mcp $2] }
        | '(#' '#)'                    {% ams (sLL $1 $> $ getRdrName unboxedUnitTyCon)
                                              [mo $1,mc $2] }

ntgtycon :: { Located RdrName }  -- A "general" qualified tycon, excluding unit tuples
        : oqtycon               { $1 }
        | '(' commas ')'        {% ams (sLL $1 $> $ getRdrName (tupleTyCon Boxed
                                                        (snd $2 + 1)))
                                       (mop $1:mcp $3:(mcommas (fst $2))) }
        | '(#' commas '#)'      {% ams (sLL $1 $> $ getRdrName (tupleTyCon Unboxed
                                                        (snd $2 + 1)))
                                       (mo $1:mc $3:(mcommas (fst $2))) }
        | '(' '->' ')'          {% ams (sLL $1 $> $ getRdrName funTyCon)
                                       [mop $1,mu AnnRarrow $2,mcp $3] }
        | '[' ']'               {% ams (sLL $1 $> $ listTyCon_RDR) [mos $1,mcs $2] }
        | '[:' ':]'             {% ams (sLL $1 $> $ parrTyCon_RDR) [mo $1,mc $2] }
        | '(' '~#' ')'          {% ams (sLL $1 $> $ getRdrName eqPrimTyCon)
                                        [mop $1,mj AnnTildehsh $2,mcp $3] }

oqtycon :: { Located RdrName }  -- An "ordinary" qualified tycon;
                                -- These can appear in export lists
        : qtycon                        { $1 }
        | '(' qtyconsym ')'             {% ams (sLL $1 $> (unLoc $2))
                                               [mop $1,mj AnnVal $2,mcp $3] }
        | '(' '~' ')'                   {% ams (sLL $1 $> $ eqTyCon_RDR)
                                               [mop $1,mj AnnVal $2,mcp $3] }

oqtycon_no_varcon :: { Located RdrName }  -- Type constructor which cannot be mistaken
                                          -- for variable constructor in export lists
                                          -- see Note [Type constructors in export list]
        :  qtycon            { $1 }
        | '(' QCONSYM ')'    {% let name = sL1 $2 $! mkQual tcClsName (getQCONSYM $2)
                                in ams (sLL $1 $> (unLoc name)) [mop $1,mj AnnVal name,mcp $3] }
        | '(' CONSYM ')'     {% let name = sL1 $2 $! mkUnqual tcClsName (getCONSYM $2)
                                in ams (sLL $1 $> (unLoc name)) [mop $1,mj AnnVal name,mcp $3] }
        | '(' ':' ')'        {% let name = sL1 $2 $! consDataCon_RDR
                                in ams (sLL $1 $> (unLoc name)) [mop $1,mj AnnVal name,mcp $3] }
        | '(' '~' ')'        {% ams (sLL $1 $> $ eqTyCon_RDR) [mop $1,mj AnnTilde $2,mcp $3] }

{- Note [Type constructors in export list]
~~~~~~~~~~~~~~~~~~~~~
Mixing type constructors and data constructors in export lists introduces
ambiguity in grammar: e.g. (*) may be both a type constructor and a function.

-XExplicitNamespaces allows to disambiguate by explicitly prefixing type
constructors with 'type' keyword.

This ambiguity causes reduce/reduce conflicts in parser, which are always
resolved in favour of data constructors. To get rid of conflicts we demand
that ambiguous type constructors (those, which are formed by the same
productions as variable constructors) are always prefixed with 'type' keyword.
Unambiguous type constructors may occur both with or without 'type' keyword.

Note that in the parser we still parse data constructors as type
constructors. As such, they still end up in the type constructor namespace
until after renaming when we resolve the proper namespace for each exported
child.
-}

qtyconop :: { Located RdrName } -- Qualified or unqualified
        : qtyconsym                     { $1 }
        | '`' qtycon '`'                {% ams (sLL $1 $> (unLoc $2))
                                               [mj AnnBackquote $1,mj AnnVal $2
                                               ,mj AnnBackquote $3] }

qtycon :: { Located RdrName }   -- Qualified or unqualified
        : QCONID            { sL1 $1 $! mkQual tcClsName (getQCONID $1) }
        | tycon             { $1 }

qtycondoc :: { LHsType RdrName } -- Qualified or unqualified
        : qtycon            { sL1 $1                     (HsTyVar NotPromoted $1)      }
        | qtycon docprev    { sLL $1 $> (HsDocTy (sL1 $1 (HsTyVar NotPromoted $1)) $2) }

tycon   :: { Located RdrName }  -- Unqualified
        : CONID                   { sL1 $1 $! mkUnqual tcClsName (getCONID $1) }

qtyconsym :: { Located RdrName }
        : QCONSYM            { sL1 $1 $! mkQual tcClsName (getQCONSYM $1) }
        | QVARSYM            { sL1 $1 $! mkQual tcClsName (getQVARSYM $1) }
        | tyconsym           { $1 }

-- Does not include "!", because that is used for strictness marks
--               or ".", because that separates the quantified type vars from the rest
tyconsym :: { Located RdrName }
        : CONSYM                { sL1 $1 $! mkUnqual tcClsName (getCONSYM $1) }
        | VARSYM                { sL1 $1 $! mkUnqual tcClsName (getVARSYM $1) }
        | ':'                   { sL1 $1 $! consDataCon_RDR }
        | '-'                   { sL1 $1 $! mkUnqual tcClsName (fsLit "-") }


-----------------------------------------------------------------------------
-- Operators

op      :: { Located RdrName }   -- used in infix decls
        : varop                 { $1 }
        | conop                 { $1 }

varop   :: { Located RdrName }
        : varsym                { $1 }
        | '`' varid '`'         {% ams (sLL $1 $> (unLoc $2))
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }

qop     :: { LHsExpr RdrName }   -- used in sections
        : qvarop                { sL1 $1 $ HsVar $1 }
        | qconop                { sL1 $1 $ HsVar $1 }
        | '`' '_' '`'           {% ams (sLL $1 $> EWildPat)
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }

qopm    :: { LHsExpr RdrName }   -- used in sections
        : qvaropm               { sL1 $1 $ HsVar $1 }
        | qconop                { sL1 $1 $ HsVar $1 }

qvarop :: { Located RdrName }
        : qvarsym               { $1 }
        | '`' qvarid '`'        {% ams (sLL $1 $> (unLoc $2))
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }

qvaropm :: { Located RdrName }
        : qvarsym_no_minus      { $1 }
        | '`' qvarid '`'        {% ams (sLL $1 $> (unLoc $2))
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }

-----------------------------------------------------------------------------
-- Type variables

tyvar   :: { Located RdrName }
tyvar   : tyvarid               { $1 }

tyvarop :: { Located RdrName }
tyvarop : '`' tyvarid '`'       {% ams (sLL $1 $> (unLoc $2))
                                       [mj AnnBackquote $1,mj AnnVal $2
                                       ,mj AnnBackquote $3] }
        | '.'                   {% hintExplicitForall' (getLoc $1) }

tyvarid :: { Located RdrName }
        : VARID            { sL1 $1 $! mkUnqual tvName (getVARID $1) }
        | special_id       { sL1 $1 $! mkUnqual tvName (unLoc $1) }
        | 'unsafe'         { sL1 $1 $! mkUnqual tvName (fsLit "unsafe") }
        | 'safe'           { sL1 $1 $! mkUnqual tvName (fsLit "safe") }
        | 'interruptible'  { sL1 $1 $! mkUnqual tvName (fsLit "interruptible") }

-----------------------------------------------------------------------------
-- Variables

var     :: { Located RdrName }
        : varid                 { $1 }
        | '(' varsym ')'        {% ams (sLL $1 $> (unLoc $2))
                                       [mop $1,mj AnnVal $2,mcp $3] }

 -- Lexing type applications depends subtly on what characters can possibly
 -- end a qvar. Currently (June 2015), only $idchars and ")" can end a qvar.
 -- If you're changing this, please see Note [Lexing type applications] in
 -- Lexer.x.
qvar    :: { Located RdrName }
        : qvarid                { $1 }
        | '(' varsym ')'        {% ams (sLL $1 $> (unLoc $2))
                                       [mop $1,mj AnnVal $2,mcp $3] }
        | '(' qvarsym1 ')'      {% ams (sLL $1 $> (unLoc $2))
                                       [mop $1,mj AnnVal $2,mcp $3] }
-- We've inlined qvarsym here so that the decision about
-- whether it's a qvar or a var can be postponed until
-- *after* we see the close paren.

qvarid :: { Located RdrName }
        : varid               { $1 }
        | QVARID              { sL1 $1 $! mkQual varName (getQVARID $1) }

-- Note that 'role' and 'family' get lexed separately regardless of
-- the use of extensions. However, because they are listed here,
-- this is OK and they can be used as normal varids.
-- See Note [Lexing type pseudo-keywords] in Lexer.x
varid :: { Located RdrName }
        : VARID            { sL1 $1 $! mkUnqual varName (getVARID $1) }
        | special_id       { sL1 $1 $! mkUnqual varName (unLoc $1) }
        | 'unsafe'         { sL1 $1 $! mkUnqual varName (fsLit "unsafe") }
        | 'safe'           { sL1 $1 $! mkUnqual varName (fsLit "safe") }
        | 'interruptible'  { sL1 $1 $! mkUnqual varName (fsLit "interruptible")}
        | 'forall'         { sL1 $1 $! mkUnqual varName (fsLit "forall") }
        | 'family'         { sL1 $1 $! mkUnqual varName (fsLit "family") }
        | 'role'           { sL1 $1 $! mkUnqual varName (fsLit "role") }

qvarsym :: { Located RdrName }
        : varsym                { $1 }
        | qvarsym1              { $1 }

qvarsym_no_minus :: { Located RdrName }
        : varsym_no_minus       { $1 }
        | qvarsym1              { $1 }

qvarsym1 :: { Located RdrName }
qvarsym1 : QVARSYM              { sL1 $1 $ mkQual varName (getQVARSYM $1) }

varsym :: { Located RdrName }
        : varsym_no_minus       { $1 }
        | '-'                   { sL1 $1 $ mkUnqual varName (fsLit "-") }

varsym_no_minus :: { Located RdrName } -- varsym not including '-'
        : VARSYM               { sL1 $1 $ mkUnqual varName (getVARSYM $1) }
        | special_sym          { sL1 $1 $ mkUnqual varName (unLoc $1) }


-- These special_ids are treated as keywords in various places,
-- but as ordinary ids elsewhere.   'special_id' collects all these
-- except 'unsafe', 'interruptible', 'forall', 'family', 'role', 'stock', and
-- 'anyclass', whose treatment differs depending on context
special_id :: { Located FastString }
special_id
        : 'as'                  { sL1 $1 (fsLit "as") }
        | 'qualified'           { sL1 $1 (fsLit "qualified") }
        | 'hiding'              { sL1 $1 (fsLit "hiding") }
        | 'export'              { sL1 $1 (fsLit "export") }
        | 'label'               { sL1 $1 (fsLit "label")  }
        | 'dynamic'             { sL1 $1 (fsLit "dynamic") }
        | 'stdcall'             { sL1 $1 (fsLit "stdcall") }
        | 'ccall'               { sL1 $1 (fsLit "ccall") }
        | 'capi'                { sL1 $1 (fsLit "capi") }
        | 'prim'                { sL1 $1 (fsLit "prim") }
        | 'javascript'          { sL1 $1 (fsLit "javascript") }
        | 'group'               { sL1 $1 (fsLit "group") }
        | 'stock'               { sL1 $1 (fsLit "stock") }
        | 'anyclass'            { sL1 $1 (fsLit "anyclass") }
        | 'unit'                { sL1 $1 (fsLit "unit") }
        | 'dependency'          { sL1 $1 (fsLit "dependency") }
        | 'signature'           { sL1 $1 (fsLit "signature") }

special_sym :: { Located FastString }
special_sym : '!'       {% ams (sL1 $1 (fsLit "!")) [mj AnnBang $1] }
            | '.'       { sL1 $1 (fsLit ".") }

-----------------------------------------------------------------------------
-- Data constructors

qconid :: { Located RdrName }   -- Qualified or unqualified
        : conid              { $1 }
        | QCONID             { sL1 $1 $! mkQual dataName (getQCONID $1) }

conid   :: { Located RdrName }
        : CONID                { sL1 $1 $ mkUnqual dataName (getCONID $1) }

qconsym :: { Located RdrName }  -- Qualified or unqualified
        : consym               { $1 }
        | QCONSYM              { sL1 $1 $ mkQual dataName (getQCONSYM $1) }

consym :: { Located RdrName }
        : CONSYM              { sL1 $1 $ mkUnqual dataName (getCONSYM $1) }

        -- ':' means only list cons
        | ':'                { sL1 $1 $ consDataCon_RDR }


-----------------------------------------------------------------------------
-- Literals

literal :: { Located HsLit }
        : CHAR              { sL1 $1 $ HsChar       (getCHARs $1) $ getCHAR $1 }
        | STRING            { sL1 $1 $ HsString     (getSTRINGs $1)
                                                   $ getSTRING $1 }
        | PRIMINTEGER       { sL1 $1 $ HsIntPrim    (getPRIMINTEGERs $1)
                                                   $ getPRIMINTEGER $1 }
        | PRIMWORD          { sL1 $1 $ HsWordPrim   (getPRIMWORDs $1)
                                                   $ getPRIMWORD $1 }
        | PRIMCHAR          { sL1 $1 $ HsCharPrim   (getPRIMCHARs $1)
                                                   $ getPRIMCHAR $1 }
        | PRIMSTRING        { sL1 $1 $ HsStringPrim (getPRIMSTRINGs $1)
                                                   $ getPRIMSTRING $1 }
        | PRIMFLOAT         { sL1 $1 $ HsFloatPrim  $ getPRIMFLOAT $1 }
        | PRIMDOUBLE        { sL1 $1 $ HsDoublePrim $ getPRIMDOUBLE $1 }

-----------------------------------------------------------------------------
-- Layout

close :: { () }
        : vccurly               { () } -- context popped in lexer.
        | error                 {% popContext }

-----------------------------------------------------------------------------
-- Miscellaneous (mostly renamings)

modid   :: { Located ModuleName }
        : CONID                 { sL1 $1 $ mkModuleNameFS (getCONID $1) }
        | QCONID                { sL1 $1 $ let (mod,c) = getQCONID $1 in
                                  mkModuleNameFS
                                   (mkFastString
                                     (unpackFS mod ++ '.':unpackFS c))
                                }

commas :: { ([SrcSpan],Int) }   -- One or more commas
        : commas ','             { ((fst $1)++[gl $2],snd $1 + 1) }
        | ','                    { ([gl $1],1) }

bars0 :: { ([SrcSpan],Int) }     -- Zero or more bars
        : bars                   { $1 }
        |                        { ([], 0) }

bars :: { ([SrcSpan],Int) }     -- One or more bars
        : bars '|'               { ((fst $1)++[gl $2],snd $1 + 1) }
        | '|'                    { ([gl $1],1) }

-----------------------------------------------------------------------------
-- Documentation comments

docnext :: { LHsDocString }
  : DOCNEXT {% return (sL1 $1 (HsDocString (mkFastString (getDOCNEXT $1)))) }

docprev :: { LHsDocString }
  : DOCPREV {% return (sL1 $1 (HsDocString (mkFastString (getDOCPREV $1)))) }

docnamed :: { Located (String, HsDocString) }
  : DOCNAMED {%
      let string = getDOCNAMED $1
          (name, rest) = break isSpace string
      in return (sL1 $1 (name, HsDocString (mkFastString rest))) }

docsection :: { Located (Int, HsDocString) }
  : DOCSECTION {% let (n, doc) = getDOCSECTION $1 in
        return (sL1 $1 (n, HsDocString (mkFastString doc))) }

moduleheader :: { Maybe LHsDocString }
        : DOCNEXT {% let string = getDOCNEXT $1 in
                     return (Just (sL1 $1 (HsDocString (mkFastString string)))) }

maybe_docprev :: { Maybe LHsDocString }
        : docprev                       { Just $1 }
        | {- empty -}                   { Nothing }

maybe_docnext :: { Maybe LHsDocString }
        : docnext                       { Just $1 }
        | {- empty -}                   { Nothing }

{
happyError :: P a
happyError = srcParseFail

getVARID        (L _ (ITvarid    x)) = x
getCONID        (L _ (ITconid    x)) = x
getVARSYM       (L _ (ITvarsym   x)) = x
getCONSYM       (L _ (ITconsym   x)) = x
getQVARID       (L _ (ITqvarid   x)) = x
getQCONID       (L _ (ITqconid   x)) = x
getQVARSYM      (L _ (ITqvarsym  x)) = x
getQCONSYM      (L _ (ITqconsym  x)) = x
getIPDUPVARID   (L _ (ITdupipvarid   x)) = x
getLABELVARID   (L _ (ITlabelvarid   x)) = x
getCHAR         (L _ (ITchar   _ x)) = x
getSTRING       (L _ (ITstring _ x)) = x
getINTEGER      (L _ (ITinteger _ x)) = x
getRATIONAL     (L _ (ITrational x)) = x
getPRIMCHAR     (L _ (ITprimchar _ x)) = x
getPRIMSTRING   (L _ (ITprimstring _ x)) = x
getPRIMINTEGER  (L _ (ITprimint  _ x)) = x
getPRIMWORD     (L _ (ITprimword _ x)) = x
getPRIMFLOAT    (L _ (ITprimfloat x)) = x
getPRIMDOUBLE   (L _ (ITprimdouble x)) = x
getTH_ID_SPLICE (L _ (ITidEscape x)) = x
getTH_ID_TY_SPLICE (L _ (ITidTyEscape x)) = x
getINLINE       (L _ (ITinline_prag _ inl conl)) = (inl,conl)
getSPEC_INLINE  (L _ (ITspec_inline_prag _ True))  = (Inline,  FunLike)
getSPEC_INLINE  (L _ (ITspec_inline_prag _ False)) = (NoInline,FunLike)
getCOMPLETE_PRAGs (L _ (ITcomplete_prag x)) = x

getDOCNEXT (L _ (ITdocCommentNext x)) = x
getDOCPREV (L _ (ITdocCommentPrev x)) = x
getDOCNAMED (L _ (ITdocCommentNamed x)) = x
getDOCSECTION (L _ (ITdocSection n x)) = (n, x)

getCHARs        (L _ (ITchar       src _)) = src
getSTRINGs      (L _ (ITstring     src _)) = src
getINTEGERs     (L _ (ITinteger    src _)) = src
getPRIMCHARs    (L _ (ITprimchar   src _)) = src
getPRIMSTRINGs  (L _ (ITprimstring src _)) = src
getPRIMINTEGERs (L _ (ITprimint    src _)) = src
getPRIMWORDs    (L _ (ITprimword   src _)) = src

-- See Note [Pragma source text] in BasicTypes for the following
getINLINE_PRAGs       (L _ (ITinline_prag       src _ _)) = src
getSPEC_PRAGs         (L _ (ITspec_prag         src))     = src
getSPEC_INLINE_PRAGs  (L _ (ITspec_inline_prag  src _))   = src
getSOURCE_PRAGs       (L _ (ITsource_prag       src)) = src
getRULES_PRAGs        (L _ (ITrules_prag        src)) = src
getWARNING_PRAGs      (L _ (ITwarning_prag      src)) = src
getDEPRECATED_PRAGs   (L _ (ITdeprecated_prag   src)) = src
getSCC_PRAGs          (L _ (ITscc_prag          src)) = src
getGENERATED_PRAGs    (L _ (ITgenerated_prag    src)) = src
getCORE_PRAGs         (L _ (ITcore_prag         src)) = src
getUNPACK_PRAGs       (L _ (ITunpack_prag       src)) = src
getNOUNPACK_PRAGs     (L _ (ITnounpack_prag     src)) = src
getANN_PRAGs          (L _ (ITann_prag          src)) = src
getVECT_PRAGs         (L _ (ITvect_prag         src)) = src
getVECT_SCALAR_PRAGs  (L _ (ITvect_scalar_prag  src)) = src
getNOVECT_PRAGs       (L _ (ITnovect_prag       src)) = src
getMINIMAL_PRAGs      (L _ (ITminimal_prag      src)) = src
getOVERLAPPABLE_PRAGs (L _ (IToverlappable_prag src)) = src
getOVERLAPPING_PRAGs  (L _ (IToverlapping_prag  src)) = src
getOVERLAPS_PRAGs     (L _ (IToverlaps_prag     src)) = src
getINCOHERENT_PRAGs   (L _ (ITincoherent_prag   src)) = src
getCTYPEs             (L _ (ITctype             src)) = src

getStringLiteral l = StringLiteral (getSTRINGs l) (getSTRING l)

isUnicode :: Located Token -> Bool
isUnicode (L _ (ITforall         iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITdarrow         iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITdcolon         iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITlarrow         iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITrarrow         iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITlarrowtail     iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITrarrowtail     iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITLarrowtail     iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITRarrowtail     iu)) = iu == UnicodeSyntax
isUnicode (L _ (IToparenbar      iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITcparenbar      iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITopenExpQuote _ iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITcloseQuote     iu)) = iu == UnicodeSyntax
isUnicode _                           = False

hasE :: Located Token -> Bool
hasE (L _ (ITopenExpQuote HasE _)) = True
hasE (L _ (ITopenTExpQuote HasE))  = True
hasE _                             = False

getSCC :: Located Token -> P FastString
getSCC lt = do let s = getSTRING lt
                   err = "Spaces are not allowed in SCCs"
               -- We probably actually want to be more restrictive than this
               if ' ' `elem` unpackFS s
                   then failSpanMsgP (getLoc lt) (text err)
                   else return s

-- Utilities for combining source spans
comb2 :: Located a -> Located b -> SrcSpan
comb2 a b = a `seq` b `seq` combineLocs a b

comb3 :: Located a -> Located b -> Located c -> SrcSpan
comb3 a b c = a `seq` b `seq` c `seq`
    combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLoc c))

comb4 :: Located a -> Located b -> Located c -> Located d -> SrcSpan
comb4 a b c d = a `seq` b `seq` c `seq` d `seq`
    (combineSrcSpans (getLoc a) $ combineSrcSpans (getLoc b) $
                combineSrcSpans (getLoc c) (getLoc d))

-- strict constructor version:
{-# INLINE sL #-}
sL :: SrcSpan -> a -> Located a
sL span a = span `seq` a `seq` L span a

-- See Note [Adding location info] for how these utility functions are used

-- replaced last 3 CPP macros in this file
{-# INLINE sL0 #-}
sL0 :: a -> Located a
sL0 = L noSrcSpan       -- #define L0   L noSrcSpan

{-# INLINE sL1 #-}
sL1 :: Located a -> b -> Located b
sL1 x = sL (getLoc x)   -- #define sL1   sL (getLoc $1)

{-# INLINE sLL #-}
sLL :: Located a -> Located b -> c -> Located c
sLL x y = sL (comb2 x y) -- #define LL   sL (comb2 $1 $>)

{- Note [Adding location info]
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is done using the three functions below, sL0, sL1
and sLL.  Note that these functions were mechanically
converted from the three macros that used to exist before,
namely L0, L1 and LL.

They each add a SrcSpan to their argument.

   sL0  adds 'noSrcSpan', used for empty productions
     -- This doesn't seem to work anymore -=chak

   sL1  for a production with a single token on the lhs.  Grabs the SrcSpan
        from that token.

   sLL  for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: sLL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

        | 'newtype' tycl_hdr '=' newconstr deriving
                { L (comb3 $1 $4 $5)
                    (mkTyData NewType (unLoc $2) $4 (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

-}

-- Make a source location for the file.  We're a bit lazy here and just
-- make a point SrcSpan at line 1, column 0.  Strictly speaking we should
-- try to find the span of the whole file (ToDo).
fileSrcSpan :: P SrcSpan
fileSrcSpan = do
  l <- getSrcLoc;
  let loc = mkSrcLoc (srcLocFile l) 1 1;
  return (mkSrcSpan loc loc)

-- Hint about the MultiWayIf extension
hintMultiWayIf :: SrcSpan -> P ()
hintMultiWayIf span = do
  mwiEnabled <- liftM ((LangExt.MultiWayIf `extopt`) . options) getPState
  unless mwiEnabled $ parseErrorSDoc span $
    text "Multi-way if-expressions need MultiWayIf turned on"

-- Hint about if usage for beginners
hintIf :: SrcSpan -> String -> P (LHsExpr RdrName)
hintIf span msg = do
  mwiEnabled <- liftM ((LangExt.MultiWayIf `extopt`) . options) getPState
  if mwiEnabled
    then parseErrorSDoc span $ text $ "parse error in if statement"
    else parseErrorSDoc span $ text $ "parse error in if statement: "++msg

-- Hint about explicit-forall, assuming UnicodeSyntax is on
hintExplicitForall :: SrcSpan -> P ()
hintExplicitForall span = do
    forall      <- extension explicitForallEnabled
    rulePrag    <- extension inRulePrag
    unless (forall || rulePrag) $ parseErrorSDoc span $ vcat
      [ text "Illegal symbol '\x2200' in type" -- U+2200 FOR ALL
      , text "Perhaps you intended to use RankNTypes or a similar language"
      , text "extension to enable explicit-forall syntax: \x2200 <tvs>. <type>"
      ]

-- Hint about explicit-forall, assuming UnicodeSyntax is off
hintExplicitForall' :: SrcSpan -> P (GenLocated SrcSpan RdrName)
hintExplicitForall' span = do
    forall    <- extension explicitForallEnabled
    let illegalDot = "Illegal symbol '.' in type"
    if forall
      then parseErrorSDoc span $ vcat
        [ text illegalDot
        , text "Perhaps you meant to write 'forall <tvs>. <type>'?"
        ]
      else parseErrorSDoc span $ vcat
        [ text illegalDot
        , text "Perhaps you intended to use RankNTypes or a similar language"
        , text "extension to enable explicit-forall syntax: forall <tvs>. <type>"
        ]

{-
%************************************************************************
%*                                                                      *
        Helper functions for generating annotations in the parser
%*                                                                      *
%************************************************************************

For the general principles of the following routines, see Note [Api annotations]
in ApiAnnotation.hs

-}

-- |Construct an AddAnn from the annotation keyword and the location
-- of the keyword itself
mj :: AnnKeywordId -> Located e -> AddAnn
mj a l s = addAnnotation s a (gl l)

-- |Construct an AddAnn from the annotation keyword and the Located Token. If
-- the token has a unicode equivalent and this has been used, provide the
-- unicode variant of the annotation.
mu :: AnnKeywordId -> Located Token -> AddAnn
mu a lt@(L l t) = (\s -> addAnnotation s (toUnicodeAnn a lt) l)

-- | If the 'Token' is using its unicode variant return the unicode variant of
--   the annotation
toUnicodeAnn :: AnnKeywordId -> Located Token -> AnnKeywordId
toUnicodeAnn a t = if isUnicode t then unicodeAnn a else a

gl = getLoc

-- |Add an annotation to the located element, and return the located
-- element as a pass through
aa :: Located a -> (AnnKeywordId,Located c) -> P (Located a)
aa a@(L l _) (b,s) = addAnnotation l b (gl s) >> return a

-- |Add an annotation to a located element resulting from a monadic action
am :: P (Located a) -> (AnnKeywordId, Located b) -> P (Located a)
am a (b,s) = do
  av@(L l _) <- a
  addAnnotation l b (gl s)
  return av

-- | Add a list of AddAnns to the given AST element.  For example,
-- the parsing rule for @let@ looks like:
--
-- @
--      | 'let' binds 'in' exp    {% ams (sLL $1 $> $ HsLet (snd $ unLoc $2) $4)
--                                       (mj AnnLet $1:mj AnnIn $3
--                                         :(fst $ unLoc $2)) }
-- @
--
-- This adds an AnnLet annotation for @let@, an AnnIn for @in@, as well
-- as any annotations that may arise in the binds. This will include open
-- and closing braces if they are used to delimit the let expressions.
--
ams :: Located a -> [AddAnn] -> P (Located a)
ams a@(L l _) bs = addAnnsAt l bs >> return a

-- |Add all [AddAnn] to an AST element wrapped in a Just
aljs :: Located (Maybe a) -> [AddAnn] -> P (Located (Maybe a))
aljs a@(L l _) bs = addAnnsAt l bs >> return a

-- |Add all [AddAnn] to an AST element wrapped in a Just
ajs a@(Just (L l _)) bs = addAnnsAt l bs >> return a

-- |Add a list of AddAnns to the given AST element, where the AST element is the
--  result of a monadic action
amms :: P (Located a) -> [AddAnn] -> P (Located a)
amms a bs = do { av@(L l _) <- a
               ; addAnnsAt l bs
               ; return av }

-- |Add a list of AddAnns to the AST element, and return the element as a
--  OrdList
amsu :: Located a -> [AddAnn] -> P (OrdList (Located a))
amsu a@(L l _) bs = addAnnsAt l bs >> return (unitOL a)

-- |Synonyms for AddAnn versions of AnnOpen and AnnClose
mo,mc :: Located Token -> AddAnn
mo ll = mj AnnOpen ll
mc ll = mj AnnClose ll

moc,mcc :: Located Token -> AddAnn
moc ll = mj AnnOpenC ll
mcc ll = mj AnnCloseC ll

mop,mcp :: Located Token -> AddAnn
mop ll = mj AnnOpenP ll
mcp ll = mj AnnCloseP ll

mos,mcs :: Located Token -> AddAnn
mos ll = mj AnnOpenS ll
mcs ll = mj AnnCloseS ll

-- |Given a list of the locations of commas, provide a [AddAnn] with an AnnComma
--  entry for each SrcSpan
mcommas :: [SrcSpan] -> [AddAnn]
mcommas ss = map (\s -> mj AnnCommaTuple (L s ())) ss

-- |Given a list of the locations of '|'s, provide a [AddAnn] with an AnnVbar
--  entry for each SrcSpan
mvbars :: [SrcSpan] -> [AddAnn]
mvbars ss = map (\s -> mj AnnVbar (L s ())) ss

-- |Get the location of the last element of a OrdList, or noSrcSpan
oll :: OrdList (Located a) -> SrcSpan
oll l =
  if isNilOL l then noSrcSpan
               else getLoc (lastOL l)

-- |Add a semicolon annotation in the right place in a list. If the
-- leading list is empty, add it to the tail
asl :: [Located a] -> Located b -> Located a -> P()
asl [] (L ls _) (L l _) = addAnnotation l          AnnSemi ls
asl (x:_xs) (L ls _) _x = addAnnotation (getLoc x) AnnSemi ls
}