leftmost :: Tree -> Int
-- testing 360 combinations of argument values
-- pruning with 3/3 rules
-- 1 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 0 candidates of size 5
-- 0 candidates of size 6
-- 16 candidates of size 7
-- tested 2 candidates
leftmost Leaf  =  undefined
leftmost (Node t1 x t2)  =  if nil t1
                            then x
                            else leftmost t1

rightmost :: Tree -> Int
-- testing 360 combinations of argument values
-- pruning with 3/3 rules
-- 1 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 0 candidates of size 5
-- 0 candidates of size 6
-- 16 candidates of size 7
-- tested 11 candidates
rightmost Leaf  =  undefined
rightmost (Node t1 x t2)  =  if nil t2
                             then x
                             else rightmost t2

size :: Tree -> Int
-- testing 360 combinations of argument values
-- pruning with 4/8 rules
-- 2 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 4 candidates of size 5
-- 4 candidates of size 6
-- 12 candidates of size 7
-- 16 candidates of size 8
-- tested 32 candidates
size Leaf  =  0
size (Node t1 x t2)  =  size t1 + (size t2 + 1)

height :: Tree -> Int
-- testing 360 combinations of argument values
-- pruning with 49/65 rules
-- 3 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 14 candidates of size 5
-- 6 candidates of size 6
-- 98 candidates of size 7
-- 86 candidates of size 8
-- tested 160 candidates
height Leaf  =  -1
height (Node t1 x t2)  =  1 + max (height t1) (height t2)

mem :: Int -> Tree -> Bool
-- testing 360 combinations of argument values
-- pruning with 11/17 rules
-- 1 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 0 candidates of size 5
-- 0 candidates of size 6
-- 0 candidates of size 7
-- 16 candidates of size 8
-- 0 candidates of size 9
-- 0 candidates of size 10
-- 0 candidates of size 11
-- 36 candidates of size 12
-- tested 42 candidates
mem x Leaf  =  False
mem x (Node t1 y t2)  =  mem x t1 || (mem x t2 || x == y)

ordered :: Tree -> Bool
-- testing 360 combinations of argument values
-- pruning with 29/39 rules
-- 2 candidates of size 1
-- 1 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 2 candidates of size 5
-- 12 candidates of size 6
-- 0 candidates of size 7
-- 36 candidates of size 8
-- 104 candidates of size 9
-- 0 candidates of size 10
-- 418 candidates of size 11
-- 1064 candidates of size 12
-- tested 1639 candidates
cannot conjure

ordered :: Tree -> Bool
-- testing 360 combinations of argument values
-- pruning with 0/0 rules
-- 0 candidates of size 1
-- 0 candidates of size 2
-- 1 candidates of size 3
-- tested 1 candidates
ordered t1  =  strictlyOrdered (inorder t1)

preorder :: Tree -> [Int]
-- testing 360 combinations of argument values
-- pruning with 4/4 rules
-- 1 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 2 candidates of size 5
-- 4 candidates of size 6
-- 4 candidates of size 7
-- 8 candidates of size 8
-- tested 13 candidates
preorder Leaf  =  []
preorder (Node t1 x t2)  =  x:(preorder t1 ++ preorder t2)

inorder :: Tree -> [Int]
-- testing 360 combinations of argument values
-- pruning with 4/4 rules
-- 1 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 2 candidates of size 5
-- 4 candidates of size 6
-- 4 candidates of size 7
-- 8 candidates of size 8
-- tested 17 candidates
inorder Leaf  =  []
inorder (Node t1 x t2)  =  inorder t1 ++ (x:inorder t2)

posorder :: Tree -> [Int]
-- testing 360 combinations of argument values
-- pruning with 4/4 rules
-- 1 candidates of size 1
-- 0 candidates of size 2
-- 0 candidates of size 3
-- 0 candidates of size 4
-- 2 candidates of size 5
-- 4 candidates of size 6
-- 4 candidates of size 7
-- 8 candidates of size 8
-- 14 candidates of size 9
-- 16 candidates of size 10
-- tested 47 candidates
posorder Leaf  =  []
posorder (Node t1 x t2)  =  posorder t1 ++ (posorder t2 ++ [x])