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Modal FRP For All

Functional Reactive Programming Without Space Leaks in Haskell

PATRICK BAHR, IT University of Copenhagen, Denmark

Functional reactive programming (FRP) provides a high-level interface for implementing reactive systems in a
declarative manner. However, this high-level interface has to be carefully reigned in to ensure that programs
can in fact be executed in practice. Specifically, one must ensure that FRP programs are productive, causal and
can be implemented without introducing space leaks. In recent years, modal types have been demonstrated to
be an effective tool to ensure these operational properties.

In this paper, we present Rattus, a modal FRP language that simplifies previous modal FRP calculi while
still maintaining the operational guarantees for productivity, causality, and space leaks. The simplified type
system makes Rattus a practical programming language that can be integrated with existing functional
programming languages. To demonstrate this, we have implemented a shallow embedding of Rattus in
Haskell that allows the programmer to write Rattus code in familiar Haskell syntax and seamlessly integrate
it with regular Haskell code. This combines the benefits enjoyed by FRP libraries such as Yampa, namely
access to a rich library ecosystem (e.g. for graphics programming), with the strong operational guarantees
offered by a bespoke type system. All proofs have been formalised using the Coq proof assistant.

Additional Key Words and Phrases: Functional reactive programming, Modal types, Haskell, Type systems

1 INTRODUCTION

Reactive systems perform an ongoing interaction with their environment, receiving inputs from the
outside, changing their internal state and producing some output. Examples of such systems include
GUIs, web applications, video games, and robots. Programming such systems with traditional
general-purpose imperative languages can be very challenging: The components of the reactive
system are put together via a complex and often confusing web of callbacks and shared mutable
state. As a consequence, individual components cannot be easily understood in isolation, which
makes building and maintaining reactive systems difficult and error-prone.

Functional reactive programming (FRP), introduced by Elliott and Hudak [1997], tries to remedy
this problem by introducing time-varying values (called behaviours or signals) and events as a means
of communication between components in a reactive system instead of shared mutable state and
callbacks. Crucially, signals and events are first-class values in FRP and can be freely combined and
manipulated, thus providing a rich and expressive programming model. In addition, we can easily
reason about FRP programs by simple equational methods.

Elliott and Hudak’s original conception of FRP is an elegant idea that allows for direct manipula-
tion of time-dependent data but also immediately leads to the question of what the interface for
signals and events should be. A naive approach would be to model signals as streams defined by
the following Haskell data type1

data Str a = a ::: (Str a)
which encodes a stream of type Str a as a head of type a and a tail of type Str a. The type Str a
encodes a discrete signal of type a, where each element of a stream represents the value of that
signal at a particular time.
1Here ::: is a data constructor written as a binary infix operator.
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1:2 Patrick Bahr

Combined with the power of higher-order functional programming we can easily manipulate
and compose such signals. For example, we may apply a function to the values of a signal:

map :: (a→ b) → Str a→ Str b
map f (x ::: xs) = f x ::: map f xs

However, this representation is too permissive and allows the programmer to write non-causal
programs, i.e. programs where the present output depends on future input such as the following:

clairvoyance :: Str Int → Str Int
clairvoyance (x ::: xs) = map (+1) xs
This function takes the input n of the next time step and returns n + 1 in the current time step. In
practical terms, this reactive program cannot be effectively executed since we cannot compute the
current value of the signal that it defines.

Much of the research in FRP has been dedicated to avoiding this problem by adequately restricting
the interface that the programmer can use to manipulate signals. This can be achieved by exposing
only a carefully selected set of combinators to the programmer or by using a more sophisticated type
system. The former approach has been very successful in practice, not least because it can be readily
implemented as a library in existing languages. This library approach also immediately integrates
the FRP language with a rich ecosystem of existing libraries and inherits the host language’s
compiler and tools. The most prominent example of this approach is Arrowised FRP [Nilsson et al.
2002], as implemented in the Yampa library for Haskell [Hudak et al. 2004], which takes signal
functions as primitive rather than signals themselves. However, this library approach forfeits some
of the simplicity and elegance of the original FRP model as it disallows direct manipulation of
signals.

In recent years, an alternative to this approach has been developed [Bahr et al. 2019; Jeffrey 2014;
Jeltsch 2013; Krishnaswami 2013; Krishnaswami and Benton 2011; Krishnaswami et al. 2012] that
uses a modal type operator ⃝ that captures the notion of time. Following this idea, an element of
type ⃝a represents data of type a arriving in the next time step. Signals are then modelled by the
type of streams defined instead as follows:

data Str a = a ::: (⃝(Str a))
That is, a stream of type Str a is an element of type a now and a stream of type Str a later, thus
separating each element of the stream by one time step. Combining this modal type with guarded
recursion [Nakano 2000] in the form of a fixed point operator of type (⃝a → a) → a gives
a powerful type system for reactive programming that guarantees not only causality, but also
productivity, i.e. the property that each element of a stream can be computed in finite time.
Causality and productivity of an FRP program means that it can be effectively implemented

and executed. However, for practical purposes it is also important whether it can be implemented
with given finite resources. If a reactive program requires an increasing amount of memory or
computation time, it will eventually run out of resources to make progress or take too long to react
to input. It will grind to a halt. Since FRP programs operate on a high level of abstraction it can be
very difficult to reason about their space and time cost. A reactive program that exhibits a gradually
slower response time, i.e. computations take longer and longer as time progresses, is said to have a
time leak. Similarly, we say that a reactive program has a space leak, if its memory use is gradually
increasing as time progresses, e.g. if it holds on to memory while continually allocating more.

In recent years, there has been an effort to devise FRP languages that avoid implicit space leaks, i.e.
space leaks that are caused by the implementation of the FRP language rather than explicit memory
allocations intended by the programmer. For example, Ploeg and Claessen [2015] devised an FRP
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Modal FRP For All 1:3

library for Haskell that avoids implicit space leaks by carefully restricting the API to manipulate
events and signals. Based on the modal operator ⃝ described above, Krishnaswami [2013] has
devised a modal FRP calculus that permit an aggressive garbage collection strategy that rules out
implicit space leaks. Moreover, Krishnaswami proved this memory property using a novel proof
technique based on logical relations.

The absence of space leaks is an operational property that is notoriously difficult to reason about
in higher-level languages. For example, consider the following innocuously looking function const
that takes an element of type a and repeats it indefinitely as a stream:

const :: a→ Str a
const x = x ::: const x

In particular, this function can be instantiated at type const :: Str Int → Str (Str Int), which
has an inherent space leak with its memory usage growing linearly with time: At each time step
n it has to store all previously observed input values from time step 0 to n. On the other hand,
instantiated with the type const :: Int → Str Int, the function can be efficiently implemented. To
distinguish between these two scenarios, Krishnaswami [2013] introduced the notion of stable
types, i.e. types such as Int that are time invariant and whose values can thus be transported into
the future without causing space leaks.

Contributions. In this paper, we present Rattus, a practical modal FRP language based on the
modal FRP calculi of Krishnaswami [2013] and Bahr et al. [2019] but with a simpler type system
that makes it attractive to use in practice. Like the Simply RaTT calculus of Bahr et al., we use a
Fitch-style type system [Clouston 2018] to avoid the syntactic overhead of the dual-context-style
type system of Krishnaswami [2013]. But we simplify the typing system by reducing the number of
tokens (from two down to one), extending the language’s expressivity, and simplifying the guarded
recursion scheme. Despite its simpler type system it retains the operational guarantees of these
earlier calculi, namely productivity, causality and admissibility of an aggressive garbage collection
strategy that prevents implicit space leaks. We have proved these properties by a logical relations
argument similar to Krishnaswami’s, and we have formalised the proof using the Coq theorem
prover (see supplementary material).
To demonstrate its use as a practical programming language, we have implemented Rattus

as an embedded language in Haskell. This implementation consists of a library that implements
the primitives of our language and a plugin for the GHC Haskell compiler. The latter is necessary
to check the more restrictive variable scope rules of Rattus and to ensure an eager evaluation
strategy that is central to the operational properties. Both components are bundled in a single
Haskell library that allows the programmer to seamlessly write Rattus code alongside Haskell code.
We further demonstrate the usefulness of the language with a number of case studies, including an
FRP library based on streams and events as well as an arrowized FRP library in the style of Yampa.
We then use these FRP libraries to implement a primitive game. The Rattus Haskell library and all
examples are included in the supplementary material.

Overview of Paper. Section 2 gives an overview of the Rattus language introducing the main
concepts and their intuitions through examples. Section 3 presents a case study of a simple FRP
library based on streams and events, as well as an arrowized FRP library. Section 4 presents the
underlying core calculus of Rattus including its type system, its operational semantics, and our
main metatheoretical results: productivity, causality and absence of implicit space leaks. Section 5
gives an overview of the proof of our metatheoretical results. Section 6 describes how Rattus
has been implemented as an embedded language in Haskell. Section 7 reviews related work and
Section 8 discusses future work.
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1:4 Patrick Bahr

2 RATTUS NORVEGICUS DOMESTICA

2.1 Delayed computations

To illustrate Rattus we will use example programs written in the embedding of the language in
Haskell. The type of streams is at the centre of these example programs:

data Str a = a ::: (⃝(Str a))
The simplest stream one can define just repeats the same value indefinitely. Such a stream is
constructed by the const function below, which takes an integer and produces a constant stream
that repeats that integer at every step:

const :: Int → Str Int
const x = x ::: delay (const x)
Because the tail of a stream of integers must be of type ⃝(Str Int), we have to use delay, which is
the introduction form for the type modality ⃝. Intuitively speaking, delay moves a computation
one time step into the future. We could think of delay having type a→ ⃝a, but this type is too
permissive as it can cause space leaks. It would allow us to move arbitrary computations – and the
data they depend on – into the future. Instead, the typing rules for delay is formulated as follows:

Γ,✓ ⊢ t :: A
Γ ⊢ delay t ::⃝A

This is a characteristic example of a Fitch-style typing rule: It introduces the token ✓ (pronounced
“tick”) in the typing context Γ. A typing context consists of type assignments of the form x :: A but
it can also contain at most one such token ✓. We can think of ✓ as denoting the passage of one
time step, i.e. all variables to the left of ✓ are one time step older than those to the right. In the
above typing rule, the term t does not have access to these “old” variables in Γ. There is, however,
an exception: If a variable in the typing context is of a type that is time-independent, we still allow
𝑡 to access them – even if the variable is one time step old. We call these time-independent types
stable types, and in particular all base types such as Int and Bool are stable. We will discuss stable
types in more detail in section 2.2.

Formally, the variable introduction rule of Rattus is as follows:
Γ′ tick-free or 𝐴 stable
Γ, 𝑥 :: 𝐴, Γ′ ⊢ x :: A

That is, if x is not of a stable type and appears to the left of a ✓, then it is no longer in scope.
Turning back to our definition of the const function, we can see that the recursive call const x

must be of type Str Int in the context Γ,✓, where Γ contains x :: Int. So x remains in scope because
it is of type Int, which is a stable type. This would not be the case if we were to generalise const to
arbitrary types:

leakyConst :: a→ Str a
leakyConst x = x ::: delay (leakyConst x) -- the rightmost occurrence of x is out of scope

In this example, x is of type a and therefore goes out of scope under delay: Since a is not necessarily
stable, x :: a is blocked by the ✓ introduced by delay.
The definition of const also illustrates the guarded recursion principle used in Rattus. For a

recursive definition to be well-typed, all recursive calls have to occur in the presence of a ✓ – in
other words, recursive calls have to be guarded by delay. This restriction ensures that all recursive
functions are productive, which means that each element of a stream can be computed in finite time.
If we did not have this restriction, we could write the following obviously unproductive function:
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loop :: Str Int
loop = loop -- unguarded recursive call to loop is not allowed

Here the recursive call loop does not occur under a delay, and thus would be rejected by the type
checker.

The function inc below takes a stream of integers as input and increments each integer by 1:

inc :: Str Int → Str Int
inc (x ::: xs) = (x + 1) ::: delay (inc (adv xs))
Here we have to use adv, the elimination form for ⃝, to convert the tail of the input stream from
type ⃝(Str Int) into type Str Int. Again we could think of adv having type ⃝a → a, but this
general type would allow us to write non-causal functions such as the following:

tomorrow :: Str Int → Str Int
tomorrow (x ::: xs) = adv xs -- adv is not allowed here

This function skips one time step so that the output at time n depends on the input at time n + 1.
To ensure causality, adv is restricted to contexts with a ✓:

Γ ⊢ t ::⃝A

Γ,✓, Γ′ ⊢ adv t :: A

Not only does adv require a ✓, it also causes all bound variables to the right of ✓ to go out of
scope. Intuitively speaking delay looks ahead one time step and adv then allows us to go back to
the present. Variable bindings made in the future are therefore not accessible once we returned to
the present.

In summary, the typing context can be of two different forms: either Γ with no ✓, or of the form
Γ,✓, Γ′ with exactly one tick. The former means that we are programming in the present, whereas
the latter means we are programming one time step into the future where Γ′ contains variables
bound one time step after the variables in Γ. We can move between these two forms by delay and
adv. Moreover, the ✓ ‘hides’ non-stable variables as expressed in the variable typing rule. So in the
future we do not have access to non-stable variables from the past.

2.2 Stable types

We haven’t yet made precise what stable types are. To a first approximation, types are stable if they
do not contain ⃝ or function types. The intuition here is that ⃝ expresses a temporal aspect and
thus types containing ⃝ are not time-invariant. Moreover, functions can implicitly have temporal
values in their closure and are therefore also excluded.

However, that means we cannot not implement themap function that takes a function f :: a→ b
and applies it to each element of a stream of type Str a, because it would require us to apply
the function f at any time in the future. We cannot do this because a → b is not a stable type
and therefore f cannot be transported into the future. However, Rattus has the type modality
□, pronounced “box”, that turns any type A into a stable type □A. Using the □ modality we can
implement map as follows:

map :: □(a→ b) → Str a→ Str b
map f (x ::: xs) = unbox f x ::: delay (map f (adv xs))
Instead of a function of type a→ b, map takes a boxed function f of type □(a→ b) as argument.
That means, f is still in scope under the delay because it is of a stable type. To use f , it has to
be unboxed using unbox, which is the elimination form for the □ modality and has simply type
□a→ a, this time without any side conditions.
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1:6 Patrick Bahr

On the other hand, the corresponding introduction form for □ has to make sure that boxed values
do not refer to non-stable variables:

Γ□ ⊢ t :: A
Γ ⊢ box t :: □A

Here, Γ□ denotes the typing context that is obtained from Γ by removing all non-stable types and
the ✓ token if present:

·□ = · (Γ, 𝑥 :: 𝐴)□ =
{
Γ□, 𝑥 :: 𝐴 if 𝐴 stable
Γ□ otherwise

(Γ,✓)□ = Γ□

Thus, for a well-typed term box t, we know that t only accesses variables of stable type.
For example, we can implement the inc function using map as follows:

inc :: Str Int → Str Int
inc = map (box (+1))
Using the □ modality we can also generalise the constant stream function to arbitrary boxed types:

constBox :: □a→ Str a
constBox a = unbox a ::: delay (constBox a)
Alternatively, we can make use of the Stable type class, to constrain type variables to stable types:

const :: Stable a⇒ a→ Str a
const x = x ::: delay (const x)
So far, we have only looked at recursive definitions at the top level. Recursive definitions can

also be nested, but we have to be careful how such nested recursion interacts with the typing
environment. Below is an alternative definition of map that takes the boxed function f as an
argument and then calls the run that recurses over the stream:

map :: □(a→ b) → Str a→ Str b
map f = run
where run :: Str a→ Str b

run (x ::: xs) = unbox f x ::: delay (run (adv xs))
Here run is type checked in a typing environment Γ that contains f :: □(a → b). Since run is
defined by guarded recursion, we require that its definition must type check in the typing context
Γ□. Because f is of a stable type, it remains in Γ□ and is thus in scope in the definition of run. So
guarded recursive definitions interact with the typing environment in the same way as box. That
way, we are sure that the recursive definition is stable and can thus safely be executed at any time
in the future.

As a consequence, the type checker will prevent us from writing the following leaky version of
map.

leakyMap :: (a→ b) → Str a→ Str b
leakyMap f = run

where run :: Str a→ Str b
run (x ::: xs) = f x ::: delay (run (adv xs)) -- f is no longer in scope here

The type of f is not stable, and thus it is not in scope in the definition of run.
Note that top-level defined identifiers such as map and const are in scope in any context after

they are defined regardless of whether there is a ✓ or whether they are of a stable type. One can
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think of top-level definitions being implicitly boxed when they are defined and implicitly unboxed
when they are used later on.

2.3 Ruling out implicit space leaks

As we have seen in the examples above, the purpose of the type modalities ⃝ and □ is to ensure
that Rattus programs are causal and productive. Furthermore, the typing rules also ensure that
Rattus has no implicit space leaks. In simple terms, this means that temporal values, i.e. values of
type ⃝A, are safe to be garbage collected after two time steps. In particular, input from a stream
can be safely garbage collected one time step after it has arrived. This memory property is made
precise later in section 4.

In order to rule out space leaks, the type system imposes restrictions on which computations and
data we can move into the future. In particular, we have to be very careful with function types since
closures can implicitly store arbitrary data. This observation is also the reason why function types
are not considered stable. If function types were considered stable, we could implicitly transport
arbitrary data across time and thus cause space leaks.

In addition, we must restrict where function definitions may appear. They are not allowed in the
context of a ✓:

Γ, 𝑥 :: 𝐴 ⊢ t :: B Γ tick-free
Γ ⊢ 𝜆x → t :: A→ B

Indeed Bahr et al. [2019] gave a counterexample that shows that allowing ✓ in lambda abstractions
would break the safety of their operational semantics that ensures the absence of implicit space
leaks in their Simply RaTT calculus. The counterexample also applies here and would cause space
leaks in Rattus.

In practice, we have not found the above restriction to impose any limitation on the programmer.
We may still allow functions to be defined in the context of a ✓, but then the body of the function
must typecheck without the ✓ and without the non-stable variables that occurred to the left of
that ✓:

Γ□, Γ′, 𝑥 :: 𝐴 ⊢ t :: B
Γ,✓, Γ′ ⊢ 𝜆x → t :: A→ B

However, we have yet to find a practical example where we need to define a function under a ✓.
To achieve the goal of ruling out space leaks, we have to be careful about the evaluation strategy

as well. Generally speaking, we need to evaluate as soon as possible but delay computations whose
result are only needed in the next time step. In other words, Rattus programs are executed using
a call-by-value semantics, except for delay and box. That is, arguments are evaluated to values
before they are passed on to functions. This is made more precise in section 4. In the Haskell
embedding of the language, this evaluation strategy is enforced by using strict data structures and
strict evaluation. The latter is achieved by a compiler plug-in that transforms all Rattus functions
so that arguments are always evaluated to weak head normal form (cf. section 6).

3 REACTIVE PROGRAMMING IN RATTUS

3.1 Programming with streams and events

In this section we showcase how Rattus can be used for reactive programming. To this end we
use a small library of combinators for programming with streams and events defined in Figure 1.
The map function should be familiar by now. The zip function combines to streams similar to

Haskell’s zip function on lists. Note however that instead of the normal pair type we use a strict
pair type:
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map :: □(a→ b) → Str a→ Str b
map f (x ::: xs) = unbox f x ::: delay (map f (adv xs))
zip :: Str a→ Str b→ Str (a ⊗ b)
zip (a ::: as) (b ::: bs) = (a ⊗ b) ::: delay (zip (adv as) (adv bs))
scan :: Stable b⇒ □(b→ a→ b) → b→ Str a→ Str b
scan f acc (a ::: as) = acc′ ::: delay (scan f acc′ (adv as))
where acc′ = unbox f acc a

type Events a = Str (Maybe′ a)
switch :: Str a→ Events (Str a) → Str a
switch (x ::: xs) (Nothing′ ::: fas) = x ::: (delay switch ⊛ xs ⊛ fas)
switch (Just ′ (a ::: as) ::: fas) = a ::: (delay switch ⊛ as ⊛ fas)
switchTrans :: (Str a→ Str b) → Events (Str a→ Str b) → (Str a→ Str b)
switchTrans f es as = switchTrans′ (f as) es as
switchTrans′ :: Str b→ Events (Str a→ Str b) → Str a→ Str b
switchTrans′ (b ::: bs) (Nothing′ ::: fs) as = b ::: (delay switchTrans′ ⊛ bs ⊛ fs ⊛ tail as)
switchTrans′ (Just ′ f ::: fs) as = b′ ::: (delay switchTrans′ ⊛ bs′ ⊛ fs ⊛ tail as)

where (b′ ::: bs′) = f as

Fig. 1. Small library for streams and events.

data a ⊗ b = !a ⊗ !b

It is like the normal pair type (a, b), but when constructing a strict pair s ⊗ t, the two components s
and t are evaluated to weak head normal form.
The scan function is similar to Haskell’s scanl function on lists: given a stream of values

v0, v1, v2, ..., the expression scan l (box f ) v computes the stream

f v v0, f (f v v0) v1, f (f (f v v0) v1) v2, ...

If one would want a variant of scan that is closer to Haskell’s scanl, i.e. the result starts with the
value v instead of f v v0, one can simply replace the first occurrence of acc′ in the definition of
scan with acc. Note that the type b has to be stable in the definition of scan so that acc′ :: b is still in
scope under delay.

A central component of functional reactive programming is that it must provide a way to react
to events. In particular, it must support the ability to switch behaviour as reaction to the occurrence
of an event. There are different ways to represent events. The simplest is to define events of type a
as streams of type Maybe a. However, we will use the strict variant of the Maybe type:

data Maybe′ a = Just ′ ! a | Nothing′

We can then devise a switch combinator that reacts to events. Given an initial stream xs and
an event e that may produce a stream, switch xs e initially behaves as xs but changes to the new
stream provided by the occurrence of an event. Note that the behaviour changes every time an
event occurs, not only the first time.

In the definition of switch we use the applicative operator ⊛ defined as follows

(⊛) ::⃝(a→ b) → ⃝a→ ⃝b
f ⊛ x = delay ((adv f ) (adv x))
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Instead of using ⊛, we could have also written delay (switch (adv xs) (adv fas)) instead.
Finally, switchTrans is a variant of switch that switches to a new stream function rather than

just a stream. It is implemented using the variant switchTrans′ where the initial stream function is
rather just a stream.

3.2 A simple reactive program

To put our bare-bones FRP library to use, let’s implement a simple single player variant of the
classic game Pong: The player has to move a paddle at the bottom of the screen to bounce a ball
and prevent it from falling.2 The core behaviour is described by the following stream function:

pong :: Str Input → Str (Pos ⊗ Float)
pong inp = zip ball pad where

pad :: Str Float
pad = padPos inp
ball :: Str Pos
ball = ballPos (zip pad inp)

It receives a stream of inputs (button presses and how much time has passed since the last input)
and produces a stream of pairs consisting of the 2D position of the ball and the 𝑥 coordinate of
the paddle. Its implementation uses two helper functions to compute these two components. The
position of the paddle only depends on the input whereas the position of the ball also depends on
the position of the paddle (since it may bounce off it):

padPos :: Str (Input) → Str Float
padPos = map (box fst ′) ◦ scan (box padStep) (0 ⊗ 0)
padStep :: (Float ⊗ Float) → Input → (Float ⊗ Float)
padStep (pos ⊗ vel) inp = ...

ballPos :: Str (Float ⊗ Input) → Str Pos
ballPos = map (box fst ′) ◦ scan (box ballStep) ((0 ⊗ 0) ⊗ (20 ⊗ 50))
ballStep :: (Pos ⊗ Vel) → (Float ⊗ Input) → (Pos ⊗ Vel)
ballStep (pos ⊗ vel) (pad ⊗ inp) = ...

Both auxiliary functions follow the same structure. They use a scan to keep track of some internal
state, e.g. the position and velocity of the ball, while consuming the input stream. The internal
state is then projected away using map. Here fst ′ is the first projection for the strict pair type. We
can see that the ball starts at the centre of the screen (at coordinates (0, 0)) and moves towards the
upper right corner.

Let’s change the implementation of pong so that it allows the player to reset the game, e.g. after
ball has fallen off the screen:

pong′ :: Str Input → Str (Pos ⊗ Float)
pong′ inp = zip ball pad where

pad = padPos inp
ball = switchTrans ballPos -- starting ball behaviour

(map (box ballTrig) inp) -- trigger restart on pressing reset button
(zip pad inp) -- input to the switch

2So it is rather like Breakout, but without the bricks.
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class Category a⇒ Arrow a where
arr :: (b→ c) → a b c
first :: a b c → a (b, d) (c, d)
second :: a b c → a (d, b) (d, c)
(∗∗∗) :: a b c → a b′ c′→ a (b, b′) (c, c′)
(&&&) :: a b c → a b c′→ a b (c, c′)

class Category cat where
id :: cat a a
(◦) :: cat b c → cat a b→ cat a c

class Arrow a⇒ ArrowLoop a where
loop :: a (b, d) (c, d) → a b c

Fig. 2. Arrow type class.

ballTrig :: Input → Maybe′ (Str (Float ⊗ Input) → Str Pos)
ballTrig inp = if reset inp then Just ′ ballPos else Nothing′

To achieve this behaviour we use the switchTrans combinator, which we initialise with the original
behaviour of the ball. The event that will trigger the switch is constructed by mapping ballTrig
over the input stream, which will create an event of type Events (Str (Float ⊗ Input) → Str Pos),
which will be triggered every time the player hits the reset button.

3.3 Arrowized FRP

The benefit of a modal FRP language is that we can directly interact with signals and events without
giving up on causality. A popular alternative to ensure causality is arrowized FRP [Nilsson et al.
2002], which takes signal functions as primitive and uses Haskell’s arrow notation [Paterson 2001]
to construct them. But Rattus promises more than just causality, it also ensures productivity and
avoids implicit space leaks. That means, there is merit in implementing an arrowized FRP interface
in Rattus.

At the centre of arrowized FRP is the Arrow type class shown in Figure 2. If we can implement a
signal function type SF a b that implements the Arrow class, we can benefit from the convenient
notation Haskell provides for it. For example, assumingwe have signal functions ballPos::SF (Float⊗
Input) Pos and padPos :: SF Input Float describing the positions of the ball and the paddle from our
game in section 3.2, we can combine these as follows:

pong :: SF Input (Pos ⊗ Float)
pong = proc inp→ do pad ← padPos −≺ inp

ball ← ballPos −≺(pad ⊗ inp)
returnA−≺(ball ⊗ pad)

We can almost copy the definition of SF from Nilsson et al. [2002], but we have to insert the ⃝
modality to make it a guarded recursive type:

data SF a b = SF (Float → a→ (⃝(SF a b), b))
Implementing the methods of the Arrow type class is straightforward except for the arr method. In
fact we cannot implement arr in Rattus at all. Because the first argument is not stable it falls out
of scope in the recursive call:

arr :: (a→ b) → SF a b
arr f = SF (𝜆 a→ (delay (arr f ), f a)) -- f is not in scope under delay

The situation is similar to the map function, and we must box the function argument so that it
remains available at all times in the future:
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arrBox :: □(a→ b) → SF a b
arrBox f = SF (𝜆 a→ (delay (arrBox f ), unbox f a))

In other words, the arr method is a potential source for space leaks in the implementation of
arrowized FRP. To avoid this, we have to give it the above more restrictive type.

But fortunately, that does not stop our effort in using the arrow notation. By treating arr f as a
short hand for arrBox (box f ) Haskell will still allow us to use the arrow notation while Rattus
makes sure that box f is still well-typed, i.e. f only refers to variables of stable type.
There are a number of other combinators that we need to provide to program with signal

functions, such as combinators for switching signals and for recursive definitions. The rSwitch
combinator corresponds to the switchTrans combinator from Figure 1:

rSwitch :: SF a b→ SF (a,Maybe′ (SF a b)) b

This combinator allows us to implement our game so that it resets to its start position if we hit the
reset button:

pong′ :: SF Input (Pos ⊗ Float)
pong′ = proc inp→ do pad ← padPos −≺ inp

let event = if reset inp then Just ′ ballPos else Nothing′

ball ← rSwitch ballPos −≺((pad ⊗ inp), event)
returnA−≺(ball ⊗ pad)

Arrows provide a very general recursion principle, the loop method of the ArrowLoop class in
Figure 2. We cannot implement loop using guarded recursion. However, Yampa also provides a
more rigid combinator loopPre, which we can implement:

loopPre :: c → SF (a, c) (b,⃝c) → SF a b
loopPre c (SF sf ) = SF (𝜆d a→ let (r, (b, c′)) = sf d (a, c)

in (delay (loopPre (adv c′) (adv r)), b))

Apart from the addition of the ⃝ modality, this definition has the same type as Yampa’s.
Using the loopPre combinator we can implement the signal function of the ball:

ballPos :: SF (Float ⊗ Input) Pos
ballPos = loopPre (20 ⊗ 50) run where

run :: SF ((Float ⊗ Input),Vel) (Pos,⃝Vel)
run = proc ((pad ⊗ inp), v) → do p← integral (0 ⊗ 0) −≺ v

returnA−≺(p, delay (calculateNewVelocity pad p v))

Here we also use the integral combinator that computes the integral of a signal using a simple
approximation that sums up rectangles under the curve:

integral :: (Stable a,VectorSpace a s) ⇒ a→ SF a a
integral acc = SF (𝜆t a→ let acc′ = acc +̂̂ (realToFrac t ∗ˆ a)

in (delay (integral acc′), acc′))

This combinator works on any type a that implements the VectorSpace type class providing a vector
addition operator +̂̂ and a scalar multiplication operator ∗ˆ.

The signal function for the paddle can be implemented in a similar fashion. The complete code
of the case studies presented in this section can be found in the supplementary material.
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Types 𝐴, 𝐵 ::= 𝛼 | 1 | Int | 𝐴 × 𝐵 | 𝐴 + 𝐵 | 𝐴→ 𝐵 | □𝐴 | ⃝𝐴 | Fix 𝛼.𝐴
Stable Types 𝑆, 𝑆 ′ ::= 1 | Int | □𝐴 | 𝑆 × 𝑆 ′ | 𝑆 + 𝑆 ′
Values 𝑣,𝑤 ::= ⟨⟩ | 𝑛 | 𝜆𝑥 .𝑡 | ⟨𝑣,𝑤⟩ | in𝑖 𝑣 | box 𝑡 | into 𝑣 | fix 𝑥 .𝑡 | 𝑙
Terms 𝑠, 𝑡 ::= ⟨⟩ | 𝑛 | 𝜆𝑥 .𝑡 | ⟨𝑠, 𝑡⟩ | in𝑖 𝑡 | box 𝑡 | into 𝑡 | fix 𝑥 .𝑡 | 𝑙 | 𝑥 | 𝑡1 𝑡2 | 𝑡1 + 𝑡2

| adv 𝑡 | delay 𝑡 | case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2 | let𝑥 = 𝑠 in 𝑡 | unbox 𝑡 | out 𝑡

Fig. 3. Syntax of (stable) types, terms, and values. In typing rules, only closed types (no free 𝛼) are considered.

∅ ⊢
Γ ⊢

Γ, 𝑥 : 𝐴 ⊢
Γ ⊢ Γ tick-free

Γ,✓ ⊢

Fig. 4. Well-formed contexts

4 CORE CALCULUS

In this section we present the core calculus of Rattus. The purpose of this calculus is to formally
present the language’s Fitch-style typing rules, its operational semantics, and to formally prove
the central operational properties, i.e. productivity, causality, and absence of implicit space leaks.
To this end, the calculus is stripped down to its essence: simply typed lambda calculus extended
with guarded recursive types Fix𝛼.𝐴 and the two type modalities □ and ⃝. Since general inductive
types and polymorphic types are orthogonal to the issue of operational properties in reactive
programming, we have omitted these for the sake of clarity.

4.1 Type System

Figure 3 defines the syntax of the core calculus. Besides guarded recursive types and the two type
modalities, we include standard sum and product types along with unit and integer types. The
type of streams of type 𝐴 would be represent as Fix𝛼.𝐴 × 𝛼 . Note the absence of ⃝ in this type.
When unfolding guarded recursive types such as Fix𝛼.𝐴 × 𝛼 , the ⃝ modality is inserted implicitly:
Fix𝛼.𝐴 × 𝛼 � 𝐴 × ⃝(Fix𝛼.𝐴 × 𝛼). This ensures that guarded recursive types are by construction
always guarded by the ⃝ modality.
Typing contexts, defined in Figure 4, consist of variable typings 𝑥 : 𝐴 and may contain at most

one ✓ token. If a typing context contains no ✓, we call it tick-free. The complete set of typing
rules for the core calculus are given in Figure 5. The typing rules that we have presented for the
surface language in section 2 appear in the same form also here, except for the change of Haskell’s ::
operator with the more standard notation. The remaining typing rules are entirely standard, except
for the typing rule for the guarded fixed point combinator fix.

The typing rule for fix follows Nakano’s fixed point combinator and ensures that the calculus is
productive. In addition, the rule enforces the body 𝑡 of the fixed point to be stable by strengthening
the typing context to Γ□. To see how the recursion syntax of the surface language translates into
the fixed point combinator, let us reconsider the const function:

const :: Int → Str Int
const x = x ::: delay (const x)
Such a recursive definition is simply translated into a fixed point fix 𝑟 .𝑡 where the recursive
occurrence of const is replaced by adv r .

const = fix 𝑟 .𝜆𝑥 .𝑥 ::: delay(adv 𝑟 𝑥)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Γ, 𝑥 : 𝐴, Γ′ ⊢ Γ′ tick-free or 𝐴 stable
Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Γ ⊢
Γ ⊢ ⟨⟩ : 1

𝑛 ∈ Z
Γ ⊢ 𝑛 : Int

Γ ⊢ 𝑠 : Int Γ ⊢ 𝑡 : Int
Γ ⊢ 𝑠 + 𝑡 : Int

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 Γ tick-free
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Γ□, Γ′, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ,✓, Γ′ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Γ ⊢ 𝑠 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ let𝑥 = 𝑠 in 𝑡 : 𝐵

Γ ⊢ 𝑡 : 𝐴→ 𝐵 Γ ⊢ 𝑡 ′ : 𝐴
Γ ⊢ 𝑡 𝑡 ′ : 𝐵

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑡 ′ : 𝐵
Γ ⊢ ⟨𝑡, 𝑡 ′⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑡 : 𝐴1 ×𝐴2 𝑖 ∈ {1, 2}
Γ ⊢ 𝜋𝑖 𝑡 : 𝐴𝑖

Γ ⊢ 𝑡 : 𝐴𝑖 𝑖 ∈ {1, 2}
Γ ⊢ in𝑖 𝑡 : 𝐴1 +𝐴2

Γ, 𝑥 : 𝐴𝑖 ⊢ 𝑡𝑖 : 𝐵 Γ ⊢ 𝑡 : 𝐴1 +𝐴2 𝑖 ∈ {1, 2}
Γ ⊢ case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2 : 𝐵

Γ,✓ ⊢ 𝑡 : 𝐴
Γ ⊢ delay 𝑡 : ⃝𝐴

Γ ⊢ 𝑡 : ⃝𝐴 Γ′ tick-free
Γ,✓, Γ′ ⊢ adv 𝑡 : 𝐴

Γ ⊢ 𝑡 : □𝐴
Γ ⊢ unbox 𝑡 : 𝐴

Γ□ ⊢ 𝑡 : 𝐴
Γ ⊢ box 𝑡 : □𝐴

Γ ⊢ 𝑡 : 𝐴[⃝(Fix𝛼.𝐴)/𝛼]
Γ ⊢ into 𝑡 : Fix𝛼.𝐴

Γ ⊢ 𝑡 : Fix𝛼.𝐴
Γ ⊢ out 𝑡 : 𝐴[⃝(Fix𝛼.𝐴)/𝛼]

Γ□, 𝑥 : ⃝𝐴 ⊢ 𝑡 : 𝐴
Γ ⊢ fix 𝑥 .𝑡 : 𝐴

Fig. 5. Typing rules.

where the stream cons operator 𝑠 ::: 𝑡 is shorthand for into ⟨𝑠, 𝑡⟩. The variable 𝑟 is of type ⃝(Int →
Str Int) and applying adv turns it into type Int → Str Int. Moreover, the restriction that recursive
calls must occur in a context with ✓ makes sure that this transformation from recursion notation
to fixed point combinator is type-preserving.
The typing rule for fix𝑥 .𝑡 also explains the treatment of recursive definition that are nested

inside a top-level definition. The typing context Γ is turned into Γ□ when type checking the body 𝑡
of the fixed point.

For example, reconsider the following ill-typed definition of leakyMap:

leakyMap :: (a→ b) → Str a→ Str b
leakyMap f = run

where run :: Str a→ Str b
run (x ::: xs) = f x ::: delay (leakyMap (adv xs))

Translated into the core calculus, it looks like this:

leakyMap = 𝜆𝑓 .fix 𝑟 .𝜆𝑠.𝑓 (head 𝑠) ::: delay((adv 𝑟 ) (adv(tail 𝑠)))

Here the pattern matching syntax is translated into projection functions head and tail that decom-
pose a stream into its head and tail, respectively. More importantly, the variable 𝑓 bound by the
outer lambda abstraction is of a function type and thus not stable. Therefore, it is not in scope in
the body of the fixed point.
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⟨𝑣 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎⟩
⟨𝑡 ;𝜎⟩ ⇓ ⟨𝑚;𝜎 ′⟩ ⟨𝑡 ′;𝜎 ′⟩ ⇓ ⟨𝑛;𝜎 ′′⟩

⟨𝑡 + 𝑡 ′;𝜎⟩ ⇓
〈
𝑚 + 𝑛;𝜎 ′′

〉
⟨𝑡 ;𝜎⟩ ⇓ ⟨𝑢;𝜎 ′⟩ ⟨𝑡 ′;𝜎 ′⟩ ⇓ ⟨𝑢 ′;𝜎 ′′⟩

⟨⟨𝑡, 𝑡 ′⟩ ;𝜎⟩ ⇓ ⟨⟨𝑢,𝑢 ′⟩ ;𝜎 ′′⟩
⟨𝑡 ;𝜎⟩ ⇓ ⟨⟨𝑣1, 𝑣2⟩ ;𝜎 ′⟩ 𝑖 ∈ {1, 2}

⟨𝜋𝑖 (𝑡);𝜎⟩ ⇓ ⟨𝑣𝑖 ;𝜎 ′⟩

⟨𝑡 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩ 𝑖 ∈ {1, 2}
⟨in𝑖 (𝑡);𝜎⟩ ⇓ ⟨in𝑖 (𝑣);𝜎 ′⟩

⟨𝑡 ;𝜎⟩ ⇓ ⟨in𝑖 (𝑢);𝜎 ′⟩ ⟨𝑡𝑖 [𝑣/𝑥];𝜎 ′⟩ ⇓ ⟨𝑢𝑖 ;𝜎 ′′⟩ 𝑖 ∈ {1, 2}
⟨case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2;𝜎⟩ ⇓ ⟨𝑢𝑖 ;𝜎 ′′⟩

⟨𝑡 ;𝜎⟩ ⇓ ⟨𝜆𝑥.𝑠 ;𝜎 ′⟩ ⟨𝑡 ′;𝜎 ′⟩ ⇓ ⟨𝑣 ;𝜎 ′′⟩ ⟨𝑠 [𝑣/𝑥];𝜎 ′′⟩ ⇓ ⟨𝑣 ′;𝜎 ′′′⟩
⟨𝑡 𝑡 ′;𝜎⟩ ⇓ ⟨𝑣 ′;𝜎 ′′′⟩

𝑙 = alloc (𝜎)
⟨delay 𝑡 ;𝜎⟩ ⇓ ⟨𝑙 ;𝜎, 𝑙 ↦→ 𝑡⟩

⟨𝑡 ;𝜂𝑁 ⟩ ⇓
〈
𝑙 ;𝜂 ′𝑁

〉 〈
𝜂 ′𝑁 (𝑙);𝜂 ′𝑁✓𝜂𝐿

〉
⇓ ⟨𝑣 ;𝜎 ′⟩

⟨adv 𝑡 ;𝜂𝑁✓𝜂𝐿⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩

⟨𝑡 ;𝜎⟩ ⇓ ⟨box 𝑡 ′;𝜎 ′⟩ ⟨𝑡 ′;𝜎 ′⟩ ⇓ ⟨𝑣 ;𝜎 ′′⟩
⟨unbox 𝑡 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎 ′′⟩

⟨𝑡 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩
⟨into 𝑡 ;𝜎⟩ ⇓ ⟨into 𝑣 ;𝜎 ′⟩

⟨𝑡 ;𝜎⟩ ⇓ ⟨into 𝑣 ;𝜎 ′⟩
⟨out 𝑡 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩

⟨𝑡 [𝑙/𝑥];𝜎, 𝑙 ↦→ fix 𝑥 .𝑡⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩ 𝑙 = alloc (𝜎)
⟨fix 𝑥 .𝑡 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩

Fig. 6. Evaluation semantics.

⟨𝑡 ;𝜂✓⟩ ⇓ ⟨𝑣 ::: 𝑙 ;𝜂𝑁✓𝜂𝐿⟩

⟨𝑡 ;𝜂⟩ 𝑣
=⇒ ⟨adv 𝑙 ;𝜂𝐿⟩

⟨𝑡 ;𝜂, 𝑙∗ ↦→ 𝑣 ::: 𝑙∗✓𝑙∗ ↦→ ⟨⟩⟩ ⇓ ⟨𝑣 ′ ::: 𝑙 ;𝜂𝑁✓𝜂𝐿, 𝑙∗ ↦→ ⟨⟩⟩

⟨𝑡 ;𝜂⟩
𝑣/𝑣′
=⇒ ⟨adv 𝑙 ;𝜂𝐿⟩

Fig. 7. Step semantics for streams.

4.2 Operational Semantics

To prove that Rattus is free of implicit space leaks, we devise an operational semantics that
after each time step deletes all data from the previous time step. This characteristics makes the
operational semantics by construction free of implicit space leaks. This approach, pioneered by
Krishnaswami [2013], allows us to reduce the proof of no implicit space leaks to a proof of type
soundness.

At the centre of this approach is the idea to execute programs in a machine that has access to a
store consisting of up to two separate heaps: A ‘now’ heap from which we can retrieve delayed
computations, and a ‘later’ heap where we can store computations that should be performed in the
next time step. Once the machine advances to the next time step, it will delete the ‘now’ heap and
the ‘later’ heap will become the new ‘now’ heap.
The operational semantics consists of two components: the evaluation semantics, presented in

Figure 6, which describes the operational behaviour of Rattus within a single time step; and the
step semantics, presented in Figure 7, which describes the behaviour of a program over time, e.g.
how it consumes and constructs streams.
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The evaluation semantics is given as a big-step operational semantics, where we write ⟨𝑡 ;𝜎⟩ ⇓
⟨𝑣 ;𝜎 ′⟩ to indicate that starting with the store 𝜎 , the term 𝑡 evaluates to the value 𝑣 and the new
store 𝜎 ′. A store 𝜎 can be of one of two forms: either it consists of a single heap 𝜂𝐿 , i.e. 𝜎 = 𝜂𝐿 ,
or it consists of two heaps 𝜂𝑁 and 𝜂𝐿 , written 𝜎 = 𝜂𝑁✓𝜂𝐿 . The ‘later’ heap 𝜂𝐿 contains delayed
computations that may be retrieved and executed in the next time step, whereas the ‘now’ heap 𝜂𝑁
contains delayed computations from the previous time step that can be retrieved and executed now.
We can only write to 𝜂𝐿 and only read from 𝜂𝑁 . However, when one time step passes, the ‘now’
heap 𝜂𝑁 is deleted and the ‘later’ heap 𝜂𝐿 becomes the new ‘now’ heap. This shifting of time is
part of the step semantics in Figure 7, which we turn to shortly.
Heaps are simply finite mappings from heap locations to terms. Given a store 𝜎 of the form 𝜂𝐿

or 𝜂𝑁✓𝜂𝐿 , we write alloc (𝜎) for a heap location 𝑙 that is not in the domain of 𝜂𝐿 . Given such a
fresh heap location 𝑙 and a term 𝑡 , we write 𝜎, 𝑙 ↦→ 𝑡 to denote the store 𝜂 ′

𝐿
or 𝜂𝑁✓𝜂 ′𝐿 , respectively,

where 𝜂 ′
𝐿
= 𝜂𝐿, 𝑙 ↦→ 𝑡 , i.e. 𝜂 ′

𝐿
is obtained from 𝜂𝐿 by extending it with a new mapping 𝑙 ↦→ 𝑡 .

Applying delay to a term 𝑡 stores 𝑡 on the later heap and returns its location on the heap.
Conversely, if we apply adv to such a delayed computation, we retrieve the term from the now
heap and evaluate it.
Also the guarded fixed point combinator fix allocates a delayed computation on the store. In a

term fix𝑥 .𝑡 of type𝐴, variable 𝑥 has type⃝𝐴. So when evaluating fix𝑥 .𝑡 we substitute delay(fix𝑥 .𝑡)
for 𝑥 in 𝑡 . But since Rattus is a call-by-value language we first evaluate delay(fix𝑥 .𝑡) to a value
before substitution. Hence, the operational semantics for fix𝑥 .𝑡 substitutes the heap location 𝑙 that
points to the delayed computation fix𝑥 .𝑡 .

4.3 Main results

The step semantics describes the behaviour of reactive programs. Here we consider two kinds of
reactive programs: terms of type Str A and terms of type Str A→ Str B. The former just produces
an infinite stream of values of type A whereas the latter is reactive process that produces a value of
type B for each input value of type A.

4.3.1 Productivity of the step semantics. The small-step semantics
𝑣

=⇒ from Figure 7 describes the
unfolding of streams of type Str A. Given a closed term ⊢ 𝑡 : 𝑆𝑡𝑟𝐴, it produces an infinite reduction
sequence

⟨𝑡 ; ∅⟩
𝑣0
=⇒ ⟨𝑡1;𝜂1⟩

𝑣1
=⇒ ⟨𝑡2;𝜂2⟩

𝑣2
=⇒ . . .

where ∅ denotes the empty heap and each 𝑣𝑖 has type 𝐴. In each step we have a term 𝑡𝑖 and the
corresponding heap 𝜂𝑖 of delayed computations. According to the definition of the semantics, we
evaluate ⟨𝑡𝑖 ;𝜂𝑖✓⟩ ⇓

〈
𝑣𝑖 ::: 𝑙 ;𝜂 ′𝑖✓𝜂𝑖+1

〉
, where 𝜂 ′𝑖 is 𝜂𝑖 but possibly extended with some additional

delayed computations and 𝜂𝑖+1 is the new heap with delayed computations for the next time step.
Crucially, the old heap 𝜂 ′𝑖 is thrown away. That is, by construction, old data is not implicitly retained
but garbage collected immediately after we completed the current time step.

As an example consider the following definition of the stream of consecutive numbers starting
from some given number:

from :: Int → Str Int
from n = n ::: delay (from (n + 1))

This definition translates to the following core calculus term:

from = fix 𝑟 .𝜆𝑛.𝑛 ::: delay(adv 𝑟 (𝑛 + 1))
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Let’s see how the stream from 0 of type Str Int unfolds:〈
from 0; ∅

〉 0
=⇒

〈
adv 𝑙 ′1; 𝑙1 ↦→ from, 𝑙 ′1 ↦→ adv 𝑙1 (0 + 1)

〉
1

=⇒
〈
adv 𝑙 ′2; 𝑙2 ↦→ from, 𝑙 ′2 ↦→ adv 𝑙2 (1 + 1)

〉
2

=⇒
〈
adv 𝑙 ′3; 𝑙3 ↦→ from, 𝑙 ′3 ↦→ adv 𝑙3 (2 + 1)

〉
...

In each step of the stream unfolding the heap contains at location 𝑙𝑖 the fixed point from and at
location 𝑙 ′𝑖 the delayed computation produced by the occurrence of delay in the body of the fixed
point. The old versions of the delayed computations are garbage collected after each step and only
the most recent version survives.

Our main result is that execution of programs by the machine described in Figure 6 and 7 is safe.
To describe the type of the produced values precisely, we need to restrict ourselves to streams over
types whose evaluation is not suspended, which excludes function and modal types. This idea is
expressed in the notion of value types, defined by the following grammar:

Value Types 𝑉 ,𝑊 ::= 1 | Int | 𝑈 ×𝑊 | 𝑈 +𝑊

We can then prove the following theorem, which both expresses the fact that the aggressive garbage
collection strategy of Rattus is safe, and that stream programs are productive:

Theorem 4.1 (productivity). Given a term ⊢ 𝑡 : Str𝐴 with 𝐴 a value type, there is an infinite
reduction sequence

⟨𝑡 ; ∅⟩
𝑣0
=⇒ ⟨𝑡1;𝜂1⟩

𝑣1
=⇒ ⟨𝑡2;𝜂2⟩

𝑣2
=⇒ . . .

such that ⊢ 𝑣𝑖 : 𝐴 for all 𝑖 ≥ 0.

The restriction to value types is only necessary for showing that each output value 𝑣𝑖 has the
correct type.

4.3.2 Causality of the step semantics. The small-step semantics
𝑣/𝑣′
=⇒ from Figure 7 describes how a

term of type Str A→ Str B transforms a stream of inputs into a stream of outputs in a step-by-step
fashion. Given a closed term ⊢ 𝑡 : Str𝐴→ Str𝐵, and an infinite stream of input values ⊢ 𝑣𝑖 : 𝐴, it
produces an infinite reduction sequence

⟨𝑡 ; ∅⟩
𝑣0/𝑣′0
=⇒ ⟨𝑡1;𝜂1⟩

𝑣1/𝑣′1
=⇒ ⟨𝑡2;𝜂2⟩

𝑣2/𝑣′1
=⇒ . . .

where each output value 𝑣 ′𝑖 has type 𝐵.

The definition of
𝑣/𝑣′
=⇒ assumes that we have some fixed heap location 𝑙∗, which acts both as

interface to the currently available input value and as a stand-in for future inputs that are not yet
available. In each step, we evaluate the current term 𝑡𝑖 in the current heap 𝜂𝑖

⟨𝑡𝑖 ;𝜂𝑖 , 𝑙∗ ↦→ 𝑣𝑖 ::: 𝑙∗✓𝑙∗ ↦→ ⟨⟩⟩ ⇓
〈
𝑣 ′𝑖 ::: 𝑙 ;𝜂 ′𝑖✓𝜂𝑖+1, 𝑙

∗ ↦→ ⟨⟩
〉

which produces the output 𝑣 ′𝑖 and the new heap 𝜂𝑖+1. Again the old heap 𝜂 ′𝑖 is simply dropped.
In the ‘later’ heap, the operational semantics maps 𝑙∗ to the placeholder value ⟨⟩, which is safe
since the machine never reads from the later heap. Then in the next reduction step, we replace that
placeholder value with 𝑣𝑖+1 ::: 𝑙∗ which contains the newly received input value 𝑣𝑖+1.

For an example, consider the following function that takes a stream of integers and produces the
stream of prefix sums:
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sum :: Str Int → Str Int
sum = run 0 where

run :: Int → Str Int → Str Int
run acc (x ::: xs) = let acc′ = acc + x

in acc′ ::: delay (run acc′ (adv xs))
This function definition translates to the following term sum in the core calculus, where we use

the notation let𝑥 = 𝑠 in 𝑡 for (𝜆𝑥 .𝑡)𝑠:
run = fix 𝑟 .𝜆𝑎𝑐𝑐.𝜆𝑠.let𝑎𝑐𝑐 ′ = 𝑎𝑐𝑐 + head 𝑠 in 𝑎𝑐𝑐 ′ ::: delay(adv 𝑟 𝑎𝑐𝑐 ′(adv (tail 𝑠)))
sum = run 0

Let’s look at the first three steps of executing the sum function with 2, 11, and 5 as its first three
input values:

⟨sum; ∅⟩
2/2
=⇒

〈
adv 𝑙 ′1; 𝑙1 ↦→ run, 𝑙 ′1 ↦→ adv 𝑙1 (0 + 2) (adv (tail (2 :: 𝑙∗)))

〉
11/13
=⇒

〈
adv 𝑙 ′2; 𝑙2 ↦→ run, 𝑙 ′2 ↦→ adv 𝑙2 (2 + 11) (adv (tail (11 :: 𝑙∗)))

〉
5/18
=⇒

〈
adv 𝑙 ′3; 𝑙3 ↦→ run, 𝑙 ′3 ↦→ adv 𝑙3 (13 + 5) (adv (tail (5 :: 𝑙∗)))

〉
...

in each step of the computation the location 𝑙𝑖 stores the fixed point run and 𝑙 ′𝑖 stores the
computation that calls that fixed point with the new accumulator value (0 + 2, 2 + 11, and 13 + 5,
respectively) and the tail of the current input stream.

We can prove the following theorem, which again expresses the fact that the garbage collection
strategy of Rattus is safe, and that stream processing functions are both productive and causal:

Theorem 4.2 (causality). Given a term ⊢ 𝑡 : Str𝐴→ Str𝐵 with 𝐵 a value type, and an infinite
sequence of values ⊢ 𝑣𝑖 : 𝐴, there is an infinite reduction sequence

⟨𝑡 ; ∅⟩
𝑣0/𝑣′0
=⇒ ⟨𝑡1;𝜂1⟩

𝑣1/𝑣′1
=⇒ ⟨𝑡2;𝜂2⟩

𝑣2/𝑣′2
=⇒ . . .

such that ⊢ 𝑣 ′𝑖 : 𝐵 for all 𝑖 ≥ 0.

Since the operational semantics is deterministic, in each step ⟨𝑡𝑖 ;𝜂𝑖⟩
𝑣𝑖/𝑣′𝑖
=⇒ ⟨𝑡𝑖+1;𝜂𝑖+1⟩ the resulting

output 𝑣 ′𝑖+1 and new state of the computation ⟨𝑡𝑖+1;𝜂𝑖+1⟩ are uniquely determined by the previous
state ⟨𝑡𝑖 ;𝜂𝑖⟩ and the input 𝑣𝑖 . Thus, 𝑣 ′𝑖 and ⟨𝑡𝑖+1;𝜂𝑖+1⟩ are independent of future inputs 𝑣 𝑗 with 𝑗 > 𝑖 .

4.4 Limitations

Now that we have formally precise statements about the operational properties of Rattus, we
should make sure that we understand what they mean in practice and what their limitations are. In
simple terms, the productivity and causality properties established by Theorem 4.1 and Theorem 4.2
state that reactive programs in Rattus can be executed effectively – they always make progress
and never depend on data that is not yet available. In the Haskell embedding of the language this
has to be of course qualified as we can use Haskell functions that loop or crash.
In addition, by virtue of the operational semantics, the two theorems also imply that programs

can be executed without implicitly retaining memory – thus avoiding implicit space leaks. This
follows from the fact that in each step the step semantics (in Figure 7) discards the ‘now’ heap and
only retains the ‘later’ heap for the next step.
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However, we can still explicitly accumulate data and thereby create space leaks. For example,
given a strict list type

data List a = Nil | !a :! !(List a)
we can construct a function that buffers the entire history of an input stream

buffer :: Stable a⇒ Str a→ Str (List a)
buffer = scan (box (𝜆xs x → x :! xs)) Nil
Given that we have a function sum :: List Int → Int that computes the sum of a list of numbers, we
can write the following alternative implementation of the sums function using buffer :

leakySums1 :: Str Int → Str Int
leakySums1 = map (box sum) ◦ buffer
At each time step this function adds the current input integer to the buffer of type List Int and
then computes the sum of the current value of that buffer. This function exhibits both a space leak
(buffering a steadily growing list of numbers) and a time leak (the time to compute each element of
the resulting stream increases at each step). However, these leaks are explicit.

Another example of a time leak is found in the following definition of a stream of all consecutive
natural numbers

leakyNats :: Str Int
leakyNats = 0 ::: delay (map (box (+1)) leakyNats)
The problem here is that this definition computes the nth element of the stream by evaluating
0 + 1 + · · · + 1︸      ︷︷      ︸

𝑛 times

.3

The space leak in leakySums1 is quite obvious to spot in the explicit allocation of a buffer of
type List Int. However, these space leaks can be sometimes a bit more subtle when this accumu-
lation of data occurs as part of a closure. We can see this behaviour in the following alternative
implementation of the sums function that works similarly to the leakyNats example above:

leakySums2 :: Str Int → Str Int
leakySums2 (x ::: xs) = x ::: delay (map (box (+x)) (leakySums2 (adv xs)))
In each step we add the current input value x to each future output. The closure (+x), which is
Haskell shorthand notation for 𝜆y → y + x, stores each input value x. Thus leakySum′ exhibits the
same space and time leak as leakySum.
None of the above space and time leaks are prevented by Rattus. The space leaks in buffer

and leakySums1 are explicit since the desire to buffer the input is explicitly stated in the program.
The other two examples are more subtle and the leaky behaviour is rooted in a time leak as the
programs construct an increasing computation in each step. Below is yet another leaky variant of
the sums function that explicitly accumulates a computation of type Int → Int to compute the sum:

leakySum3 :: □(Int → Int) → Str Int → Str Int
leakySum3 f (x ::: xs) = unbox f x ::: (delay (leakySum3 (box (𝜆y → unbox f (y + x)))) ⊛ xs)
This shows that the programmer still has to be careful about time leaks. Note that these leaky

functions can also be implemented in the calculi of Krishnaswami [2013] and Bahr et al. [2019],
although some reformulation is necessary for the latter calculus. For more details we refer to the
discussion on related work in section 7.2.
3But GHC is quiet clever and will produce efficient code for leakyNats anyway.
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5 META THEORY

Our goal is to show that Rattus’s core calculus enjoys the three central operational properties:
productivity, causality and absence of implicit space leaks. These properties are stated in Theorem 4.1
and Theorem 4.2, and we show in this section how these are proved. Note that the absence of space
leaks follows from these theorems because the operational semantics already ensures this memory
property by means of garbage collecting the ‘now’ heap after each step. Since the proof is fully
formalised in the accompanying Coq proofs, we only give a high-level overview of the proof’s
constructions.
We prove the abovementioned theorems by establishing a semantic soundness property. For

productivity, our soundness property must imply that the evaluation semantics ⟨𝑡 ;𝜎⟩ ⇓ ⟨𝑣 ;𝜎 ′⟩
converges for each well-typed term 𝑡 , and for causality, the soundness property must imply that
this is also the case if 𝑡 contains references to heap locations in 𝜎 .

To obtain such a soundness result, we construct a Kripke logical relation that incorporates these
properties. Generally speaking a Kripke logical relation constructs for each type 𝐴 a relation J𝐴K𝑤
indexed over some world𝑤 with some closure conditions when the index𝑤 changes. In our case,
J𝐴K𝑤 is a set of terms. Moreover, the index𝑤 consists of three components: a number 𝜈 to act as a
step index [Appel and McAllester 2001], a store 𝜎 to establish the safety of garbage collection, and
an infinite sequence 𝜂 of future heaps in order to capture the causality property.
A crucial ingredient of a Kripke logical relation is the ordering on the indices. The ordering on

the number 𝜈 is the standard ordering on numbers. For heaps we use the standard ordering on
partial maps: 𝜂 ⊑ 𝜂 ′ iff 𝜂 (𝑙) = 𝜂 ′(𝑙) for all 𝑙 ∈ dom (𝜂). Infinite sequences of heaps are ordered
pointwise according to ⊑. Moreover, we extend the ordering to stores in two different ways:

𝜂𝑁 ⊑ 𝜂 ′𝑁 𝜂𝐿 ⊑ 𝜂 ′𝐿

𝜂𝑁✓𝜂𝐿 ⊑ 𝜂 ′𝑁✓𝜂
′
𝐿

𝜎 ⊑ 𝜎 ′

𝜎 ⊑✓ 𝜎 ′
𝜂 ⊑ 𝜂 ′

𝜂 ⊑✓ 𝜂 ′′✓𝜂 ′

That is, ⊑ is the pointwise extension of the order on heaps to stores, and ⊑✓ is more general and
permits introducing an arbitrary ‘now’ heap if none is present.
Given these orderings we define two logical relations, the value relationV𝜈J𝐴K𝜂𝜎 and the term

relation T𝜈J𝐴K𝜂𝜎 . Both are defined in Figure 8 by well-founded recursion according to the lexico-
graphic ordering on the triple (𝜈, |𝐴| , 𝑒), where |𝐴| is the size of 𝐴 defined below, and 𝑒 = 1 for the
term relation and 𝑒 = 0 for the value relation.

|𝛼 | = |⃝𝐴| = |Int| = |1| = 1
|𝐴 × 𝐵 | = |𝐴 + 𝐵 | = |𝐴→ 𝐵 | = 1 + |𝐴| + |𝐵 |
|□𝐴| = |Fix𝛼.𝐴| = 1 + |𝐴|

In the definition of the logical relation, we use the notation 𝜂;𝜂 to denote an infinite sequence
of heaps that starts with the heap 𝜂 and then continues as the sequence 𝜂. Moreover, we use the
notation 𝜎 (𝑙) to denote 𝜂𝐿 (𝑙) if 𝜎 is of the form 𝜂𝐿 or 𝜂𝑁✓𝜂𝐿 .

The crucial part of the logical relation that ensures both causality and the absence of space leaks
is the case for ⃝𝐴. The value relation of ⃝𝐴 at store index 𝜎 is defined as all heap locations that
map to computations in the term relation of 𝐴 but at the store index gc(𝜎)✓𝜂. Here gc(𝜎) denotes
the garbage collection of the store 𝜎 as defined in Figure 8. It simply drops the ‘now’ heap if present.
To see how this definition captures causality we have to look a the index 𝜂;𝜂 of future heaps. It
changes to the index 𝜂, i.e. all future heaps are one time step closer, and the very first future heap 𝜂
becomes the new ‘later’ heap in the store index gc(𝜎)✓𝜂, whereas the old ‘later’ heap in 𝜎 becomes
the new ‘now’ heap.
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V𝜈JIntK
𝜂
𝜎 = {𝑛 | 𝑛 ∈ Z},

V𝜈J1K𝜂𝜎 = {⟨⟩},

V𝜈J𝐴 × 𝐵K𝜂𝜎 = {⟨𝑣1, 𝑣2⟩ | 𝑣1 ∈ V𝜈J𝐴K𝜂𝜎 ∧ 𝑣2 ∈ V𝜈J𝐵K𝜂𝜎 },

V𝜈J𝐴 + 𝐵K𝜂𝜎 = {in1 𝑣 | 𝑣 ∈ V𝜈J𝐴K𝜂𝜎 } ∪ {in2 𝑣 | 𝑣 ∈ V𝜈J𝐵K𝜂𝜎 },

V𝜈J𝐴→ 𝐵K𝜂𝜎 =

{
𝜆𝑥.𝑡

���∀𝜈 ′ ≤ 𝜈, 𝜎 ′ ⊒ gc(𝜎), 𝜂 ′ ⊒ 𝜂.∀𝑢 ∈ V𝜈′J𝐴K𝜂
′

𝜎′ .𝑡 [𝑢/𝑥] ∈ T𝜈′J𝐵K𝜂
′

𝜎′

}
,

V𝜈J□𝐴K𝜂𝜎 = {box 𝑡 | ∀𝜂 ′.𝑡 ∈ T𝜈J𝐴K𝜂
′

∅ },

V0J⃝𝐴K𝜂𝜎 = {𝑙 | 𝑙 ∈ Loc}

V𝜈+1J⃝𝐴K𝜂;𝜂
𝜎 = {𝑙 | 𝜎 (𝑙) ∈ T𝜈J𝐴K𝜂

gc(𝜎)✓𝜂},

V𝜈JFix𝛼.𝐴K𝜂𝜎 =

{
into(𝑣)

��� 𝑣 ∈ V𝜈J𝐴[⃝(Fix𝛼.𝐴)/𝛼]K𝜂𝜎
}

T𝜈J𝐴K𝜂𝜎 =

{
𝑡

���∀𝜎 ′ ⊒✓ 𝜎.∃𝜎 ′′, 𝑣 . ⟨𝑡 ;𝜎 ′⟩ ⇓ ⟨𝑣 ;𝜎 ′′⟩ ∧ 𝑣 ∈ V𝜈J𝐴K𝜂
𝜎′′

}

C𝜈J·K𝜂𝜎 = {★}

C𝜈JΓ, 𝑥 : 𝐴K𝜂𝜎 =

{
𝛾 [𝑥 ↦→ 𝑣]

���𝛾 ∈ C𝜈JΓK𝜂𝜎 , 𝑣 ∈ V𝜈J𝐴K𝜂𝜎
}

C𝜈JΓ,✓K𝜂
𝜂𝑁 ✓𝜂𝐿

= C𝜈+1JΓK𝜂𝐿 ;𝜂
𝜂𝑁

Garbage Collection:

gc(𝜂𝐿) = 𝜂𝐿

gc(𝜂𝑁✓𝜂𝐿) = 𝜂𝐿

Fig. 8. Logical relation.

The central theorem that establishes type soundness is the so-called fundamental property of the
logical relation. It states that well-typed terms are in the term relation. For the induction proof of
this property we also need to consider open terms and to this end, we also need a corresponding
context relation C𝜈JΓK𝜂𝜎 , which is given in Figure 8.

Theorem 5.1 (Fundamental Property). Given Γ ⊢ 𝑡 : 𝐴, and 𝛾 ∈ C𝜈JΓK𝜂𝜎 , then 𝑡𝛾 ∈ T𝜈J𝐴K𝜂𝜎

The proof of the fundamental property is a lengthy but entirely standard induction on the typing
relation Γ ⊢ 𝑡 : 𝐴. Both Theorem 4.1 and Theorem 4.2 are then proved using the above theorem.

6 EMBEDDING RATTUS IN HASKELL

Our goal with Rattus is to combine the benefits of modal FRP with the practical benefits of FRP
libraries. Because of the Fitch-style typing rules we cannot implement Rattus as a straightforward
library of combinators. Instead we rely on a combination of a very simply library that implements
the primitives of the language and a compiler plugin that performs some additional checks. We
start with a description of the implementation followed by an illustration how the implementation
is used in practice.

6.1 Implementation of Rattus

At its core, our implementation is consists of a very simple library that implements the primitives
of our language (delay, adv, box, and unbox) so that they can be readily used in Haskell code. The
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data ⃝a = Delay a

delay :: a→ ⃝a
delay x = Delay x

adv ::⃝a→ a
adv (Delay x) = x

data □a = Box a

box :: a→ □a
box x = Box x

unbox :: □a→ a
unbox (Box d) = d

Fig. 9. Implementation of Rattus primitives.

Source
Code

Haskell
AST

Haskell AST
(explicitly typed)

Haskell
Coreexecutable

parse typecheck

desugar

code generation

simplify

Fig. 10. Compiler phases of GHC (simplified).

library is given in its entirety (except for the Stable type class) in Figure 9. Both ⃝ and □ are simple
wrapper types, each with their own wrap and unwrap function. The constructors Delay and Box
are not exported by the library, i.e. ⃝ and □ are treated as abstract types.

If we were to use these primitives as provided by the library we would end up with the problems
illustrated in section 2: The implementation of Rattus would enjoy none of the operational
properties we have proved. To make sure that programs use these primitives according to the
typing rules of Rattus, our implementation has a second component: a plugin for the GHC Haskell
compiler that enforces the typing rules of Rattus.
The design of this plugin follows the simple observation that any Rattus program is also a

Haskell program but with more restrictive rules for variable scope and when Rattus’s primitives
may be used. So type checking a Rattus program boils down to first typechecking it as a Haskell
program and then checking that it follows the stricter variable scope rules. That means, we must
keep track of when variables fall out of scope due to the use of delay, adv and box, but also due to
guarded recursion. Similarly, we must make sure that delay and guarded recursive calls are only
used in contexts where ✓ is absent, and adv is only used when a ✓ is present.

To enforce these additional simple scope rules we make use of GHC’s plugin API which allows
us to customise part of GHC’s compilation pipeline. The different phases of GHC are illustrated in
Figure 10. There are two phases that are interesting for our implementation: the typechecking phase
and the simplification phase. Simplification applies a series of transformations on the desugared
abstract syntax tree (AST). This desugared language of GHC is called Core and GHC allows a
plugin developer to add an additional transformation step by providing a suitable function of type
CoreProgram → CoreM CoreProgram. Our goal is not to transform the Core AST but rather to
perform an additional scope check on it. So our plugin implements a function

scopeCheck :: CoreProgram→ CoreM CoreProgram

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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{-# OPTIONS -fplugin=Rattus.Plugin #-}
import Rattus
import Rattus.Stream
import Rattus.ToHaskell

{-# ANN sums Rattus #-}
sums :: Str Int → Str Int
sums = scan (box (+)) 0

main = loop (runTransducer sums)
where loop (Trans t) = do
input ← readLn
let (result, next) = t input
print result
loop next

Fig. 11. Complete Rattus program.

that performs the requisite checks on the Core AST and if successful returns it with some modifica-
tions (see below). Otherwise, it uses the CoreM monad to print a helpful type error message. In
general, one should avoid performing type-checking on a desugared representation as this results
in poor error messages. However, in this case we only check for variable scopes so we are still able
to give good error messages.

One important component of checking variable scope is checking whether types are stable. This
is a simple syntactic check: a type 𝜏 is stable if all occurrences of ⃝ or function types in 𝜏 are
nested under a □. However, we also want to support polymorphic types with type constraints such
as in the const combinator:

const :: Stable a⇒ a→ Str a
const x = x ::: delay (const x)

The Stable type class is another primitive that is provided by our library and is defined as follows:

class StableInternal a where
class StableInternal a⇒ Stable a where

We only export the Stable type class but not StableInternal to make sure the user of the language
cannot implement the type class Stable for arbitrary types of their choosing. Our library does not
implement instances of the Stable class either. Instead, such instances are derived by a second
plugin that uses GHC’s typechecker plugin API, which allows us to provide limited customisation
to the type checking phase (see Figure 10). Using this API one can give GHC a custom procedure for
resolving type constraints. Whenever GHC’s type checker finds a constraint of the form Stable 𝜏 , it
will send it to our plugin, which will resolve it by performing the abovementioned syntactic check
on 𝜏 .

The final component of our implementation is to make sure that it faithfully follows the opera-
tional semantics that we described for the core calculus in section 4.2. In particular, Rattus has
a call-by-value semantics, i.e. arguments are evaluated before they are passed on to a function
(except for delay and box). To this end, our implementation transforms all function applications
so that arguments are evaluated to weak head normal form. This transformation is performed in
the abovementioned scopeCheck function that is applied in GHC’s simplification phase. If the Core
AST satisfies Rattus’s scoping rules then the AST is transformed in this way.

6.2 Using Rattus

To write Rattus code inside Haskell one must use GHC with the flag -fplugin=Rattus.Plugin,
which enables the Rattus plugin described above. Figure 11 shows a complete program that
illustrates the interaction between Haskell and Rattus. The language is imported via the Rattus
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module, with the Rattus.Stream providing a stream library (of which we have seen an excerpt in
Figure 1). We only have one Rattus function, summing, which is indicated by an annotation. This
function uses the scan combinator to define a stream transducer that sums up its input stream.
Finally, we use the runTransducer function that is provided by the Rattus.ToHaskell module. It turns
a stream function of type Str a→ Str b into a Haskell value of type Trans a b defined as follows:

data Trans a b = Trans (a→ (b, Trans a b))
This allows us to run the stream function step by step as illustrated in the main function: It reads
an integer from the console passes it on to the stream function, prints out the response, and then
repeats the process.

Alternatively, if a module contains only Rattus definitions we can use the annotation

{-# ANN module Rattus #-}

to declare that all definitions in a module are to be interpreted as Rattus code.

7 RELATEDWORK

The central ideas of functional reactive programming were originally developed for the language
Fran [Elliott and Hudak 1997] for reactive animation. These ideas have since been developed into
general purpose libraries for reactive programming, most prominently the Yampa library [Nilsson
et al. 2002] for Haskell, which has been used in a variety of applications including games, robotics,
vision, GUIs, and sound synthesis.

More recently Ploeg and Claessen [2015] have developed the FRPNow! library for Haskell, which
– like Fran – uses behaviours and events as FRP primitives (as opposed to signal functions), but
carefully restricts the API to guarantee causality and the absence of implicit space leaks. To argue
for the latter, the authors construct a denotational model and show using a logical relation that
their combinators are not “inherently leaky”. The latter does not imply the absence of space leaks,
but rather that in principle it can be implemented without space leaks.

7.1 Modal FRP calculi

The idea of using modal type operators for reactive programming goes back to Jeffrey [2012],
Krishnaswami and Benton [2011], and Jeltsch [2013]. One of the inspirations for Jeffrey [2012] was
to use linear temporal logic [Pnueli 1977] as a programming language through the Curry-Howard
isomorphism. The work of Jeffrey and Jeltsch has mostly been based on denotational semantics,
and Bahr et al. [2019]; Cave et al. [2014]; Krishnaswami [2013]; Krishnaswami and Benton [2011];
Krishnaswami et al. [2012] are the only works to our knowledge giving operational guarantees.
The work of Cave et al. [2014] shows how one can encode notions of fairness in modal FRP, if one
replaces the guarded fixed point operator with more standard (co)recursion for (co)inductive types.
The guarded recursive types and fixed point combinator originate with Nakano [2000], but

have since been used for constructing logics for reasoning about advanced programming lan-
guages [Birkedal et al. 2011] using an abstract form of step-indexing [Appel and McAllester 2001].
The Fitch-style approach to modal types [Fitch 1952] has been used for guarded recursion in Clocked
Type Theory [Bahr et al. 2017], where contexts can contain multiple, named ticks. Ticks can be
used for reasoning about guarded recursive programs. The denotational semantics of Clocked Type
Theory [Mannaa and Møgelberg 2018] reveals the difference from the more standard dual context
approaches to modal logics, such as Dual Intuitionistic Linear Logic [Barber 1996]: In the latter, the
modal operator is implicitly applied to the type of all variables in one context, in the Fitch-style,
placing a tick in a context corresponds to applying a left adjoint to the modal operator to the context.
Guatto [2018] introduced the notion of time warp and the warping modality, generalising the delay
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Γ, ♯, 𝑥 : ⃝𝐴 ⊢ 𝑡 : 𝐴
Γ ⊢ fix 𝑥 .𝑡 : □𝐴

Γ ⊢ 𝑡 : □𝐴 token-free(Γ′)
Γ, ♯, Γ′ ⊢ unbox 𝑡 : 𝐴

Γ, 𝑥 : 𝐴, Γ′ ⊢ token-free(Γ′)
Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Fig. 12. Selected typing rules from Bahr et al. [2019].

modality in guarded recursion, to allow for a more direct style of programming for programs with
complex input-output dependencies. Combining these ideas with the garbage collection results of
this paper, however, seems very difficult.

7.2 Space leaks

The work by Krishnaswami [2013] and Bahr et al. [2019] is the closest to the present work. Both
present a modal FRP language with a garbage collection result similar to ours. Krishnaswami
[2013] pioneered this approach to prove the absence of implicit space leaks. Moreover, he also
implemented a compiler for his language, which translates FRP programs into JavaScript.
Like the present work, the Simply RaTT calculus of Bahr et al. uses a Fitch-style type system,

which provides lighter syntax to interact with the □ and ⃝ modality compared to Krishnaswami’s
use of qualifiers in his calculus. The latter is closely related to dual context systems and requires
the use of pattern matching as elimination forms of the modalities (as opposed to the eliminators
unbox and adv).
On the other hand Simply RaTT has a somewhat more complicated typing rule for guarded

fixed points (cf. Figure 12). It uses a token ♯ (in addition to ✓) to serve the role that stabilisation
of a context Γ to Γ□ serves in Rattus. Moreover, fixed points produce terms of type □A rather
than just A. Taken together, this makes the syntax for guarded recursive function definitions more
complicated. For example, the map function would be defined like this:

map : □(a→ b) → □(Str a→ Str b)
map f # (a :: as) = unbox f a :: map f ⊛ as

Here, the ♯ is used to indicate that the argument 𝑓 is to the left of the ♯ token and only because of
the presence of this token we can use the unbox combinator on f (cf. Figure 12). Additionally, the
typing of recursive definitions is somewhat awkward: map has return type □(Str a→ Str b) but
when used in a recursive call as seen above map f is of type ⃝(Str a→ Str b) instead. Moreover,
we cannot call map recursively on its own. All recursive calls must be of the form map f , the exact
pattern that appears to the left of the #.
We argue that our typing system and syntax is simpler than both the work of Krishnaswami

[2013] and Bahr et al. [2019], combining the simpler syntax of fixed points with the more streamlined
syntax afforded by Fitch-style typing. In addition, our more general typing rule for variables (cf.
Figure 12) also avoids the use of explicit operations for transporting stable variables over tokens,
e.g. the promote operation that appears in both Krishnaswami [2013] and Bahr et al. [2019].

We should note that that Simply RaTT will reject some programs with time leaks, e.g. leakyNats,
leakySums2, and leakySums3 from section 4.4. We can easily write programs that are equivalent
to leakyNats and leakySums2, that are well-typed Simply RaTT using tupling (essentially defining
these functions simultaneously with map). On the other hand leakySums3 cannot be expressed
in Simply RaTT, essentially because the calculus does not support nested □ types. But a similar
restriction can be implemented for Rattus, and indeed our implementation of Rattus will issue a
warning when box or guarded recursion are nested.
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8 DISCUSSION AND FUTUREWORK

We have shown that modal FRP can be seamlessly integrated into the Haskell programming
language. Two main ingredients are central to achieving this integration: (1) the use of Fitch-style
typing to simplify the syntax for interacting with the two modalities and (2) lifting some of the
restrictions found in previous work on Fitch-style typing systems. While these improvements in
the underlying core calculus may appear mild, maintaining the operational properties along the
way is a subtle balancing act.

This paper opens up many avenues for future work both on the implementation side and the
underlying theory. We chose Haskell as our implementation language as it has a compiler extension
API that makes it easy for us to implement Rattus and convenient for programmers to start
using Rattus with little friction. However, we think that implementing Rattus in call-by-value
languages like OCaml or F# should be easily achieved by a simple post-processing step that checks
the Fitch-style variable scope. This can be done by an external tool (not unlike a linter) that does
not need to be integrated into the compiler. Moreover, while the use of the type class Stable is
convenient, it is not necessary as we can always use the □ modality instead (cf. const vs. constBox).

FRP is not the only possible application of Fitch-style type systems. However, most of the interest
in Fitch-style system has been in logics and dependent type theory [Bahr et al. 2017; Birkedal
et al. 2018; Borghuis 1994; Clouston 2018] as opposed to programming languages. Rattus is to our
knowledge the first implementation of a Fitch-style programming language. We would expect that
programming languages for information control flow [Kavvos 2019] and recent work on modalities
for pure computations Chaudhury and Krishnaswami [2020] admit a Fitch-style presentation and
could be implemented similarly to Rattus.
Part of the success of FRP libraries such as Yampa and FRPNow! is due to the fact that they

provide a rich and highly optimised API that integrates well with its host language. In this paper,
we have shown that Rattus can be seamlessly embedded in Haskell, but more work is required
to design a good library and to perform the low-level optimisations that are often necessary to
obtain good real-world performance. For example, our definition of signal functions in section 3.3
resembles the semantics of Yampa’s signal functions, but in Yampa signal functions are defined as
a GADT that can handle some special cases much more efficiently.
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