
Robust Distributed Software
Transactions for Haskell

Application Manual

Frank Kupke

July 28, 2010

Contents

1 Application Programming using DSTM 2

2 Name Server 2

3 Robustness 4

4 DSTM Library API 6

5 Sample Applications 7
5.1 Dining Philosophers . 7
5.2 Chat . 9
5.3 Bomberman . 14

1

1 Application Programming using DSTM

The Distributed Software Transactional Memory (DSTM) library enables
the designer of robust distributed applications to focus on the application
logic itself rather than on complex synchronization techniques. DSTM builds
on the STM API known from Concurrent Haskell and extends it for the use
in distributed systems. This manual explains the additional requirements to
use the distributed library version. The application programmer needs to:

• Initialize the distributed functionality

• Run a name server application on one node

• Register with the name server TVars to be shared with other nodes

• Lookup from the name server TVars shared from other nodes

• Catch transactional exception to add robustness

The application programmer should encapsulate each of the node main
programs in a startDist call to properly initialize the distributed system.

2 Name Server

The name server application maintains a dictionary of distributed link TVars
(line 1). It accepts messages of type NameServerMsg to register, unregister,
and lookup TVars (line 2).

1 type TVarDict = [(String , VarLink)]

2 data NameServerMsg = Reg String VarLink
3 | UnReg String
4 | Lookup String

The application programmer starts a name server application on an arbi-
trary node within the distributed system. We show a straightforward exam-
ple name server application (lines 5–26). It creates a socket listening on a
TCP port randomly chosen from the private port section (www.iana.org/
assignments/port-numbers), continuously checks for messages, and main-
tains the TVar dictionary depending on the received messages.

Note that we create a new connection for every name server message
(lines 11, 15) unlike the optimized communication. Typically, in a distributed
system, name server communication is a relatively rare event. Also, note that

2

www.iana.org/assignments/port-numbers
www.iana.org/assignments/port-numbers

we unregister a possibly registered TVar before registering it thus remapping
the dictionary entry (line 21).

5 main :: IO ()
6 main = do
7 s <- listenOn (PortNumber 60000)
8 readMsg [] s

9 readMsg :: TVarDict -> Socket -> IO ()
10 readMsg tVarDict s = do
11 (h, _, _) <- accept s
12 str <- hGetLine h
13 newTable <- case reads str of
14 ((msg ,_):_) -> handleMsg h msg tVarDict
15 hClose h
16 readMsg newTable s

17 handleMsg :: Handle -> NameServerMsg -> TVarDict
18 -> IO TVarDict
19 handleMsg h msg tVarDict = case msg of
20 Reg name tVar -> return $
21 (name , tVar) : filter ((name /=) . fst) tVarDict
22 UnReg name -> return $
23 filter ((name /=) . fst) tVarDict
24 Lookup name -> do
25 hPutStrLn h (show (lookup name tVarDict))
26 return tVarDict

The DSTM library interface provides functions for a proper communica-
tion with the name server. The application should use registerTVar to
register a TVar with the name server. Note that the function also regis-
ters the TVar actions within the library (line 31) which is necessary for a
proper DSTM communication. The deregisterTVar function is added for
completeness. It is not required in a DSTM system.

27 registerTVar :: Dist a => String -> TVar a -> String
28 -> IO ()
29 registerTVar server tVar name = do
30 putServerLn server (Reg name (tVarToLink tVar))
31 regTVars gMyEnv tVar

32 deregisterTVar :: String -> String -> IO ()
33 deregisterTVar server name =
34 putServerLn server (UnReg name)

3

The lookupTVar function provides the interface to reveal a TVar from the
name server. It also properly handles finalizing the internal library commu-
nication (line 42). Note that we annotate the TVar type when converting
the generic link TVar (line 41) thus enabling the type system to select the
type correct finTVars instance. In order to use the type variable a inside
the function body we have to declare it forall quantified.

35 lookupTVar :: forall a . Dist a => String -> String
36 -> IO (Maybe (TVar a))
37 lookupTVar server name = do
38 answer <- getServerLn server (Lookup name)
39 case reads answer of
40 ((Just link ,_):_) -> do
41 let tVar::TVar a = LinkTVar link
42 finTVars tVar
43 return (Just tVar)
44 _ -> return Nothing

The name server message exchange routines form the low-level socket com-
munication.

45 putServerLn :: String -> a -> IO ()
46 putServerLn nameServer msg = do
47 h <- connectTo nameServer (PortNumber 60000)
48 hPutStrLn h (show msg)
49 hClose h

50 getServerLn :: String -> a -> IO String
51 getServerLn nameServer msg = do
52 h <- connectTo nameServer (PortNumber 60000)
53 hPutStrLn h (show msg)
54 hFlush h
55 answer <- hGetLine h
56 hClose h
57 return answer

3 Robustness

The DSTM library provides one exception indicating a failure of one or more
TVars. The library throws an exception of type SomeDistTVarException

whenever it detects such a failure during any arbitrary atomic transaction.

4

The library ensures that any transaction which executes while a TVar failure
occurs continues and finishes consistently without further precautions from
the application. However, in general, the application itself may not continue
properly as intended.

For the application programmer a failing TVar is identical to a TVar that
is not accessible any more and never will be accessible again. The TVar

symbolizes a specific service of the distributed program. The application
designer should catch any SomeDistTVarException exception and react on
it appropriately by replacing the lost service or by ensuring that the service
is no longer needed.

The exception signals that at least one TVar accessed in an atomic trans-
action is not accessible any more. While the application may chose to con-
tinuously access failed TVars without risking any inconsistencies, the library
will throw further SomeDistTVarException exceptions which is not very ef-
ficient. Therefore, after catching a SomeDistTVarException exception, the
application should identify which TVars are no longer accessible by testing
each TVar used in the failing transaction with the isDistErrTVar predicate.
The predicate requires both the exception and the to be tested TVar and
returns True if the TVar is unavailable and False otherwise. Note that any
thrown exception of type SomeDistTVarException is referentially transpar-
ent. It may be used at any time to test TVar accessibility. The test result
will always be identical.

A design pattern for adding robustness to a DSTM application may look
like this:

58 foo tVar = Control.Exception.catch (do
59 ...
60 atomic $ do
61 ... tVar
62)(\e -> if (isDistErrTVar e tVar) ...)

We give an example of implementing a robust application using robust
software transactions in Subsection 5.2.

5

4 DSTM Library API

This is the complete DSTM library application programmer interface (API)
for reference.

63 data STM a -- abstract

64 instance Monad STM

65 -- Running STM computations

66 atomic :: STM a -> IO a
67 retry :: STM a
68 orElse :: STM a -> STM a -> STM a

69 -- Transactional variables

70 data TVar a -- abstract

71 newTVar :: Dist a => a -> STM (TVar a)
72 readTVar :: Dist a => TVar a -> STM a
73 writeTVar :: Dist a => TVar a -> a -> STM ()

74 -- Exceptions

75 throw :: SomeException -> STM a
76 catch :: STM a -> (SomeException -> STM a) -> STM a

77 -- Additional distributed interface

78 class (Show a, Read a) => Dist a where
79 regTVars :: EnvAddr -> a -> IO ()
80 finTVars :: a -> IO ()

81 startDist :: IO a -> IO a
82 registerTVar :: Dist a => String -> TVar a -> String
83 -> IO ()
84 deregisterTVar :: String -> String -> IO ()
85 lookupTVar :: Dist a => String -> String
86 -> IO (Maybe (TVar a))

87 -- Additional robustness interface

88 data SomeDistTVarException -- abstract

89 isDistErrTVar :: SomeDistTVarException -> TVar a
90 -> Bool

6

5 Sample Applications

We present three example DSTM applications, each focusing on a special as-
pect of using the DSTM library. The first application is a distributed version
of the classic Dining Philosophers problem used to demonstrate problems of
and solutions for concurrent and distributed programming. We use it as an
example to introduce the basic idea of designing an application with dis-
tributed TVars.

The next application is a simple internet Chat program. With this exam-
ple we show how to use a custom data type for TVar values and thus how
to define class Dist instance functions that unwrap the custom TVar type
constructors. We also introduce the usage of the library robustness functions
to make the application itself robust against unexpected faults like suddenly
unavailable chat participants.

Our final example is a distributed Bomberman game implementation. Nat-
urally, the focus is on the application being a useful example of utilizing our
library rather than the game being a breathtaking entertainment. We use
this example, however, to show that the DSTM library can be used also in
a soft real-time environment like a distributed game and scales well with
a larger amount of TVars. Also, we make a more elaborate approach to
application robustness in case of disappearing game participants.

5.1 Dining Philosophers

The hallmark example of a concurrent and distributed application is the
Dining Philosophers problem formulated by Edsger Wybe Dijkstra in 1971.
We show a simple program running each one of a total of three philosopher
processes when started with its ordinary number as argument.

We import Control.Distributed.STM.DSTM (line 2) for the library and
NameService (line 3) for the nameserver. We synchronize solely on the sticks
between the philosophers modeled as TVars of type Bool (line 7). For sim-
plicity we run the name server on the same process node as the philosopher
processes (line 8) which in reality would be some specific domain name. Note
that we call getLine (line 33) just to allow a somewhat synchronized start of
all processes. Figure 1 symbolizes the output of three philosopher processes
just started, each on a separate terminal shell.

1 module Main where

2 import Control.Distributed.STM.DSTM
3 import Control.Distributed.STM.NameService

7

4 import Prelude
5 import System
6 import System.IO

7 type Stick = TVar Bool

8 gNameServer = "localhost"

9 takeStick :: Stick -> STM ()
10 takeStick s = do
11 b <- readTVar s
12 if b
13 then writeTVar s False
14 else retry

15 putStick :: Stick -> STM ()
16 putStick s = writeTVar s True

17 phil :: Int ->Int -> Stick -> Stick -> IO ()
18 phil i n l r = do
19 atomic $ do
20 takeStick l
21 takeStick r
22 putStrLn (show n ++ ". Phil is eating "++show i)
23 atomic $ do
24 putStick l
25 putStick r
26 phil (i+1) n l r

27 main :: IO ()
28 main = startDist $ do
29 (arg:_) <- getArgs
30 let n= read arg
31 l <- atomic $ newTVar True
32 registerTVar gNameServer l arg
33 getLine
34 (Just r) <- lookupTVar gNameServer
35 $ show ((n ‘mod ‘ 3) + 1)
36 phil 1 n l r

8

> main 1 > main 2 > main 3

1. Phil is eating 1 2. Phil is eating 1 3. Phil is eating 1
1. Phil is eating 2 2. Phil is eating 2 3. Phil is eating 2
1. Phil is eating 3 2. Phil is eating 3 3. Phil is eating 3
1. Phil is eating 4 2. Phil is eating 4 3. Phil is eating 4
1. Phil is eating 5 ... 3. Phil is eating 5
1. Phil is eating 6 ...
...

Figure 1: Dining Philosopher Sample Output

5.2 Chat

The Chat application is a classic example for a distributed program. An
arbitrary number of users, each at a computer network connected to the
internet, communicates with each other. There is one dedicated host server.
The client users register with the server and subsequently send messages to
the server which broadcasts them to all registered clients.

We show both, a simple chat server and a simple chat client communicating
with each other using TVars to synchronize. Therefore, we design a custom
data type ServerCmd providing commands to join (line 40) and leave (line 42)
a chat and to distribute messages (line 41). The ServerCmd alternative join
contains a mutually recursive defined type CmdTVar (line 44). This TVar may
contain a command generated by a chat client and interpreted by the chat
server.

In order for the DSTM library to properly communicate TVars, we make
the custom TVar type an instance of type class Dist and therefore import
the Dist module (line 39). Both, regTVars (line 46) and finTVars (line 48)
methods unwrap the application defined constructor from the TVar. Alter-
natives containing no TVars simply return the unit value.

37 module ChatData where

38 import Control.Distributed.STM.DSTM
39 import Control.Distributed.STM.Dist

40 data ServerCmd = Join String CmdTVar
41 | Msg String String
42 | Leave String
43 deriving (Show ,Read)

9

44 type CmdTVar = TVar (Maybe ServerCmd)

45 instance Dist ServerCmd where
46 regTVars env (Join _ cmd) = regTVars env cmd
47 regTVars _ _ = return ()

48 finTVars (Join _ cmd) = finTVars cmd
49 finTVars _ = return ()

We designate one CmdTVar to each participating process discriminating the
chat server TVar. The chat server application registers its own TVar with
the name server (line 61).

50 -- Chat Server

51 module Main where

52 import ChatData
53 import Control.Distributed.STM.DSTM
54 import Control.Distributed.STM.NameService
55 import Control.Exception as CE
56 import DebugTrans
57 import Maybe

58 main :: IO ()
59 main = startDist $ do
60 inVar <- atomic $ newTVar Nothing
61 registerTVar "localhost" inVar "Chat"
62 chatServer inVar []

The chatServer function (line 63) loops forever watching its TVar for
client messages. It dynamically builds and updates a dictionary of all par-
ticipating client CmdTVars with the client name as key. The server realizes
the watch mechanism by reading the TVar (line 66) and suspending itself
calling retry if it contains Nothing. Note that it also reads all dictionary
client TVars without using their values (line 69) and suspends itself calling
retry. We use this construct to perform a simple failure recovery. If some
client becomes unavailable and no other client is sending a chat message
the transparent DSTM link mechanism still detects the fault and throws a
library exception.

If the server TVar contains a chat command (line 71), it resets the message,
broadcasts a corresponding message to all dictionary clients, and maintains
the dictionary accordingly.

10

63 chatServer :: CmdTVar -> [(String , CmdTVar)] -> IO ()
64 chatServer inCmd dict = CE.catch (do
65 newDict <- atomic $ do
66 cmd <- readTVar inCmd
67 case cmd of
68 Nothing -> do
69 mapM_ (readTVar.snd) dict
70 retry
71 Just serverCmd -> do
72 writeTVar inCmd Nothing
73 case serverCmd of
74 Join name msgVar -> do
75 mapM_ (flip writeTVar msg.snd) dict
76 return ((name ,msgVar): dict)
77 where msg = Just (Msg name " joint")
78 Msg _ _ -> do
79 mapM_ (flip writeTVar cmd.snd) dict
80 return dict
81 Leave name -> do
82 mapM_ (flip writeTVar msg.snd) dic
83 return dic
84 where msg = Just (Msg name " left")
85 dic = filter ((/= name).fst) dict
86 chatServer inCmd newDict
87)(\e -> chatServer inCmd (removeErrDict e dict))

We catch any SomeDistTVarException arising from unavailable TVars.
Hence, we detect unexpectedly disappearing chat clients and continue the
server loop with a dictionary cleaned from any disappeared client (line 87).
The DSTM predicate isDistErrTVar facilitates the erroneous TVar detec-
tion (line 92).

88 removeErrDict :: SomeDistTVarException
89 -> [(String , CmdTVar)]
90 -> [(String , CmdTVar)]
91 removeErrDict e dict =
92 [d | d <- dict , not (isDistErrTVar e (snd d))]

The chat client application first looks up the chat server represented by
its CmdTVar (line 105) from the name server. If found, it joins the chat
submitting its new empty client TVar (line 111). Then the client starts the
threads stdinClient to manage the user input and serverClient to handle
chat server messages.

11

93 -- Chat Client

94 module Main where

95 import ChatData
96 import Control.Concurrent
97 import Control.Distributed.STM.DSTM
98 import Maybe
99 import Control.Distributed.STM.NameService

100 import System.IO

101 main :: IO ()
102 main = startDist $ do
103 putStrLn "Your Name: "
104 name <- getLine
105 serverTVar <- lookupTVar "localhost" "Chat"
106 case serverTVar of
107 Nothing -> putStrLn "Chat server not reachable"
108 Just cmdTVar -> do
109 myTVar <- atomic $ do
110 new <- newTVar Nothing
111 writeTVar cmdTVar (Just (Join name new))
112 return new
113 forkIO (serverClient myTVar)
114 stdinClient name cmdTVar

We simply encode any user message into a client TVar command (line 124).
If the user message is to terminate the chat, we encode the according com-
mand (line 121) and terminate the client itself.

115 stdinClient :: String -> CmdTVar -> IO ()
116 stdinClient name cmdTVar = do
117 putStrLn (name ++ " >")
118 msg <- getLine
119 if msg == "bye"
120 then atomic $
121 writeTVar cmdTVar (Just (Leave name))
122 else do
123 atomic $
124 writeTVar cmdTVar (Just (Msg name msg))
125 stdinClient name cmdTVar

The serverClient thread watches its own client CmdTVar (line 129), sus-
pends using retry when there is no message, and prints and resets any
received message.

12

126 serverClient :: CmdTVar -> IO ()
127 serverClient myTVar = do
128 s <- atomic $ do
129 cmd <- readTVar myTVar
130 case cmd of
131 Nothing -> retry
132 Just (Msg name msg) -> do
133 writeTVar myTVar Nothing
134 return (name ++ ": " ++ msg)
135 _ -> return ""
136 putStrLn s
137 serverClient myTVar

Note that the shown program is very elementary. A more useable chat
application would probably synchronize using a transactional channel thus
prohibiting the loss of single messages if the server is not able to respond to
all requests in time.

> main > main
Your Name: Your Name:
Curry Haskell
Curry > Haskell >
Haskell: Hello Curry Curry: joint
Oh, hi Haskell Hello Curry
Curry > Haskell >
Curry: Oh, hi Haskell Haskell: Hello Curry
Haskell: Good to see you Curry: Oh, hi Haskell
You Too. Got to go Good to see you
Curry > Haskell >
Curry: You Too. Got to go Haskell: Good to see you
bye Curry: You Too. Got to go
> Curry: left

...

Figure 2: Chat Sample Output

Figure 2 shows the output of a sample chat session with two clients. Note
that we show each output in a self-contained sequence side by side with the
other. There is no common time line among the two terminal transcripts.

13

5.3 Bomberman

With the Bomberman game application we provide a somewhat more com-
plex distributed program probing the performance of the DSTM library in
a soft real-time environment. The idea of the game is that all participating
players move around in a shared game field. The players can walk in four di-
rections. There is empty space allowing to walk around. There are arbitrary
walls in the field to block the player from passing.

The goal is to eliminate the opponents by dropping bombs, hence the
name of the game. A dropped bomb explodes delayed to allow the player to
leave the area. An exploding bomb destroys the field position it is on itself
plus the four surrounding positions. Exploding bombs destroy wall elements
and opponents and immediately ignite dropped but not yet exploded bombs.
Figure 3 shows a screen shot of the terminal of one player while gaming with
two opponents.

W W W W W W W W W W
W @ W
W W W W
W W W W W
W W W W
W X X W W o: player
W X X X X .@ @: opponent
W X X . .: bomb
W o X: explosion
W W W W: wall element

Figure 3: Bomberman Game Screen Shot

In this section we describe the major design ideas behind our Bomberman
adaptation rather than every concrete implementation detail for the sake of
clarity.

The Bomberman main data structure is the GameState record of system
states (lines 146–161) represented by various TVars properly synchronizing
the process state view of each Bomberman thread with other threads and
with the other player processes. The game field (line 140) consists of rows
and columns of possible field elements as shown in Figure 3.

138 data Element = Empty | Wall | Player | Opponent
139 | Bomb | XPlosion
140 type Field = [[Element]]

14

We design player positions as points, bombs as a list of points, and explo-
sions surrounding each bomb as a list of lists of points. Each Bomberman
instance records its user commands as moves. A Dead move symbolizes a
killed player.

141 data Point = Point Int Int
142 type Bombs = [Point]
143 type Xplos = [Bombs]

144 data Move = MoveLeft | MoveRight | MoveUp | MoveDown
145 | DropBomb | Dead

The GameState record consists of TVars like repaint (line 148) designed
for intra-process synchronization1 while others are designed for an additional
inter -process synchronization like the repaints TVar (line 149).

146 data GameState = GameState {
147 move :: TVar (Maybe Move),
148 repaint :: TVar Bool ,
149 repaints :: TVar [TVar Bool],
150 field :: TVar Field ,
151 player :: TVar Point ,
152 opponents :: TVar [TVar Point],
153 plBombs :: TVar Bombs ,
154 plXplosion :: TVar Xplos ,
155 plBCount :: TVar Int ,
156 bombs :: TVar [TVar Bombs],
157 xplosion :: TVar [TVar Xplos],
158 bCounts :: TVar [TVar Int],
159 quit :: TVar Bool ,
160 quits :: TVar [TVar Bool]
161 }

Each Bomberman instance runs in either autonomous, master, or slave
mode. The first mode is a concurrent one process game. The last two are
used in a distributed game with exactly one master player and an arbitrary
number of slave players. The master player hosts all unique status elements
like the playing field. Each player hosts individual status elements like its
next move.

1We distinguish here between intra-process (thread to thread) and inter-process (node
to node) synchronization for explanatory reasons, only. Its application is fully trans-
parent.

15

After initialization, each player node starts the game calling launchGame.
The function starts threads to concurrently display any change of the field
elements (line 164), to control the player (line 165), and to read the user
input (line 166). The player thread, when dropping bombs, in turn forks a
new thread for each bomb. Any bomb thread autonomously manages the
behavior of its bomb including the delayed explosion.

162 launchGame :: GameState -> IO Int
163 launchGame gameState = do
164 forkIO (view gameState) >> return ()
165 forkIO (player gameState) >> return ()
166 input gameState

Table 1 gives an overview of the synchronization task each TVar manages.
We explain the idea behind it with the repaint example. A similar mechanism
operates on the other TVar combinations.

Intra- Inter- View- Input- Player- Bomb-
Process TVars Threads

field 7 7 7

move 7 7

player 7 7 7

opponents 7 (7) (7)
repaint 7

repaints (7) 7 7

plBombs 7

plBlasts 7

plBCount 7

bombs 7 (7) (7)
blasts 7 7 7

bCounts (7) 7 7 7

quit 7

quits 7

Table 1: Regular 7 and Recovery (7) TVar Synchronization

Each player creates a repaint TVar predicate initialized to False. The
view thread checks repaint and redraws the field if the predicate holds.
Otherwise, the view retries thus suspending itself. The other threads set
repaint to True whenever they change a field element and hence schedule a
redraw. This mechanism is sufficient for a concurrent scenario with a single

16

player. In order to manage a distributed game we include a repaints TVar

containing a list of repaint TVars. The master player hosts the repaints

TVar. Each slave player hosts its own repaint TVar and inserts it into
repaints. In this design, scheduling a redraw simply requires to set all
repaint predicates in the repaints list. The view thread design is identical
to the concurrent scenario.

We also provide system recovery in case of unavailable slave players. The
other players, including the master, properly remove all references to the
faulty player and continue with the game. The master itself is essential to our
implementation of the game. However, one could implement recovery means
to replace a faulty master player as well. Providing a backup master player
or designing a system that enables clients to take over the master player
functionality, however, results in a significantly higher system complexity.

The DSTM library requires all data types of TVar values to be made a
Dist type class instance. Other than the types used in the Chat sample
program (see Section 5.2), the Bomberman types are standard compound
Haskell types like Maybe and [] for which we have already defined the neces-
sary instance functions within the library. Therefore, we make the instance
functions simply returning (). None of the custom data types include any
TVars themselves (lines 167–175).

167 instance Dist Move where
168 finTVars _ = return ()
169 regTVars _ _ = return ()

170 instance Dist Point where
171 finTVars _ = return ()
172 regTVars _ _ = return ()

173 instance Dist Element where
174 finTVars _ = return ()
175 regTVars _ _ = return ()

17

	Application Programming using DSTM
	Name Server
	Robustness
	DSTM Library API
	Sample Applications
	Dining Philosophers
	Chat
	Bomberman

