{-| Translation from "Agda.Syntax.Concrete" to "Agda.Syntax.Abstract". Involves scope analysis, figuring out infix operator precedences and tidying up definitions. -} module Agda.Syntax.Translation.ConcreteToAbstract ( ToAbstract(..), localToAbstract , concreteToAbstract_ , concreteToAbstract , TopLevel(..) , TopLevelInfo(..) , topLevelModuleName , importPrimitives , checkAttributes ) where import Prelude hiding ( null, (||) ) import Control.Monad ( (>=>), (<=<), foldM, forM, forM_, zipWithM, zipWithM_ ) import Control.Applicative ( liftA2, liftA3 ) import Control.Monad.Except ( runExceptT, MonadError(..) ) import Control.Monad.State ( StateT, execStateT, get, put ) import Control.Monad.Trans.Maybe import Control.Monad.Trans ( lift ) import Data.Bifunctor import Data.Foldable (traverse_) import Data.Set (Set) import Data.Map (Map) import Data.Functor (void) import qualified Data.List as List import qualified Data.Set as Set import qualified Data.Map as Map import qualified Data.HashSet as HashSet import Data.Maybe import Data.Void import Agda.Syntax.Common import qualified Agda.Syntax.Common.Pretty as P import Agda.Syntax.Common.Pretty (render, Pretty, pretty, prettyShow) import Agda.Syntax.Concrete as C import Agda.Syntax.Concrete.Attribute as CA import Agda.Syntax.Concrete.Generic import Agda.Syntax.Concrete.Operators import Agda.Syntax.Concrete.Pattern import Agda.Syntax.Abstract as A import Agda.Syntax.Abstract.Pattern as A ( patternVars, checkPatternLinearity, containsAsPattern, lhsCoreApp, lhsCoreWith, noDotOrEqPattern ) import Agda.Syntax.Abstract.Pretty import Agda.Syntax.Abstract.UsedNames ( allUsedNames ) import qualified Agda.Syntax.Internal as I import Agda.Syntax.Position import Agda.Syntax.Literal import Agda.Syntax.Info as Info import Agda.Syntax.Concrete.Definitions as C import Agda.Syntax.Fixity import Agda.Syntax.Concrete.Fixity (DoWarn(..)) import Agda.Syntax.Notation import Agda.Syntax.Scope.Base as A import Agda.Syntax.Scope.Monad import Agda.Syntax.Translation.AbstractToConcrete (ToConcrete, ConOfAbs) import Agda.Syntax.DoNotation import Agda.Syntax.IdiomBrackets import Agda.Syntax.TopLevelModuleName import Agda.TypeChecking.Monad.Base hiding (ModuleInfo, MetaInfo) import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Monad.Trace (traceCall, setCurrentRange) import Agda.TypeChecking.Monad.State hiding (topLevelModuleName) import qualified Agda.TypeChecking.Monad.State as S import Agda.TypeChecking.Monad.Signature (notUnderOpaque) import Agda.TypeChecking.Monad.MetaVars (registerInteractionPoint) import Agda.TypeChecking.Monad.Debug import Agda.TypeChecking.Monad.Env (insideDotPattern, isInsideDotPattern, getCurrentPath) import Agda.TypeChecking.Rules.Builtin (isUntypedBuiltin, bindUntypedBuiltin, builtinKindOfName) import Agda.TypeChecking.Patterns.Abstract (expandPatternSynonyms) import Agda.TypeChecking.Pretty hiding (pretty, prettyA) import Agda.TypeChecking.Quote (quotedName) import Agda.TypeChecking.Opacity import Agda.TypeChecking.Warnings import Agda.Interaction.FindFile (checkModuleName, rootNameModule, SourceFile(SourceFile)) -- import Agda.Interaction.Imports -- for type-checking in ghci import {-# SOURCE #-} Agda.Interaction.Imports (scopeCheckImport) import Agda.Interaction.Options import qualified Agda.Interaction.Options.Lenses as Lens import Agda.Interaction.Options.Warnings import qualified Agda.Utils.AssocList as AssocList import Agda.Utils.Boolean ( (||), ifThenElse ) import Agda.Utils.CallStack ( HasCallStack, withCurrentCallStack ) import Agda.Utils.Char import Agda.Utils.Either import Agda.Utils.FileName import Agda.Utils.Function ( applyWhen, applyWhenJust, applyWhenM, applyUnless ) import Agda.Utils.Functor import Agda.Utils.Lens import Agda.Utils.List import Agda.Utils.List1 ( List1, pattern (:|) ) import Agda.Utils.List2 ( List2, pattern List2 ) import qualified Agda.Utils.List1 as List1 import qualified Agda.Utils.Map as Map import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import Agda.Utils.Set1 ( Set1 ) import qualified Agda.Utils.Set1 as Set1 import Agda.Utils.Singleton import Agda.Utils.Tuple import Agda.Utils.Impossible ( __IMPOSSIBLE__ ) import Agda.ImpossibleTest (impossibleTest, impossibleTestReduceM) import qualified Agda.Syntax.Common as A {-------------------------------------------------------------------------- Exceptions --------------------------------------------------------------------------} notAnExpression :: (HasCallStack, MonadTCError m) => C.Expr -> m a notAnExpression = locatedTypeError NotAnExpression notAValidLetBinding :: (HasCallStack, MonadTCError m) => Maybe NotAValidLetBinding -> m a notAValidLetBinding = locatedTypeError NotAValidLetBinding {-------------------------------------------------------------------------- Helpers --------------------------------------------------------------------------} newtype RecordConstructorType = RecordConstructorType [C.Declaration] instance ToAbstract RecordConstructorType where type AbsOfCon RecordConstructorType = A.Expr toAbstract (RecordConstructorType ds) = recordConstructorType ds -- | Compute the type of the record constructor (with bogus target type) recordConstructorType :: [C.Declaration] -> ScopeM A.Expr recordConstructorType decls = -- Nicify all declarations since there might be fixity declarations after -- the the last field. Use NoWarn to silence fixity warnings. We'll get -- them again when scope checking the declarations to build the record -- module. niceDecls NoWarn decls $ buildType . takeFields where takeFields = List.dropWhileEnd notField notField NiceField{} = False notField _ = True buildType :: [C.NiceDeclaration] -> ScopeM A.Expr -- TODO: Telescope instead of Expr in abstract RecDef buildType ds = do -- The constructor target type is computed in the type checker. -- For now, we put a dummy expression there. -- Andreas, 2022-10-06, issue #6165: -- The dummy was builtinSet, but this might not be defined yet. let dummy = A.Lit empty $ LitString "TYPE" tel <- catMaybes <$> mapM makeBinding ds return $ A.mkPi (ExprRange (getRange ds)) tel dummy makeBinding :: C.NiceDeclaration -> ScopeM (Maybe A.TypedBinding) makeBinding d = do let failure = typeError $ NotValidBeforeField d r = getRange d mkLet d = Just . A.TLet r <$> toAbstract (LetDef RecordLetDef d) setCurrentRange r $ case d of C.NiceField r pr ab inst tac x (Arg ai t) -> do fx <- getConcreteFixity x ai <- checkFieldArgInfo True ai let bv = Arg ai $ unnamed $ C.mkBinder $ (C.mkBoundName x fx) { bnameTactic = tac } toAbstract $ C.TBind r (singleton bv) t -- Public open is allowed and will take effect when scope checking as -- proper declarations. C.NiceOpen r m dir -> do mkLet $ C.NiceOpen r m dir{ publicOpen = Nothing } C.NiceModuleMacro r p e x modapp open dir -> do mkLet $ C.NiceModuleMacro r p e x modapp open dir{ publicOpen = Nothing } -- Do some rudimentary matching here to get NotValidBeforeField instead -- of NotAValidLetDecl. C.NiceMutual _ _ _ _ [ C.FunSig _ _ _ _ macro _ _ _ _ _ , C.FunDef _ _ abstract _ _ _ _ [ C.Clause _ _ (C.LHS _p [] []) (C.RHS _) NoWhere [] ] ] | abstract /= AbstractDef && macro /= MacroDef -> do mkLet d C.NiceLoneConstructor{} -> failure C.NiceMutual{} -> failure -- TODO: some of these cases might be __IMPOSSIBLE__ C.Axiom{} -> failure C.PrimitiveFunction{} -> failure C.NiceModule{} -> failure C.NiceImport{} -> failure C.NicePragma{} -> failure C.NiceRecSig{} -> failure C.NiceDataSig{} -> failure C.NiceFunClause{} -> failure C.FunSig{} -> failure -- Note: these are bundled with FunDef in NiceMutual C.FunDef{} -> failure C.NiceDataDef{} -> failure C.NiceRecDef{} -> failure C.NicePatternSyn{} -> failure C.NiceGeneralize{} -> failure C.NiceUnquoteDecl{} -> failure C.NiceUnquoteDef{} -> failure C.NiceUnquoteData{} -> failure C.NiceOpaque{} -> failure checkModuleApplication :: C.ModuleApplication -> ModuleName -> C.Name -> C.ImportDirective -> ScopeM (A.ModuleApplication, ScopeCopyInfo, A.ImportDirective) checkModuleApplication (C.SectionApp _ tel m es) m0 x dir' = do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking ModuleApplication " ++ prettyShow x ] -- For the following, set the current module to be m0. withCurrentModule m0 $ do -- Parse the raw arguments of the module application. (See issue #1245.) args <- parseArguments (C.Ident m) es -- Scope check the telescope (introduces bindings!). tel' <- catMaybes <$> toAbstract tel -- Scope check the old module name and the module args. m1 <- toAbstract $ OldModuleName m args' <- toAbstractCtx (ArgumentCtx PreferParen) args -- Copy the scope associated with m and take the parts actually imported. (adir, s) <- applyImportDirectiveM (C.QName x) dir' =<< getNamedScope m1 (s', copyInfo) <- copyScope m m0 s -- Set the current scope to @s'@ modifyCurrentScope $ const s' printScope "mod.inst" 40 "copied source module" reportSDoc "scope.mod.inst" 30 $ return $ pretty copyInfo let amodapp = A.SectionApp tel' m1 args' reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked ModuleApplication " ++ prettyShow x ] reportSDoc "scope.decl" 70 $ vcat $ [ nest 2 $ prettyA amodapp ] return (amodapp, copyInfo, adir) checkModuleApplication (C.RecordModuleInstance _ recN) m0 x dir' = withCurrentModule m0 $ do m1 <- toAbstract $ OldModuleName recN s <- getNamedScope m1 (adir, s) <- applyImportDirectiveM recN dir' s (s', copyInfo) <- copyScope recN m0 s modifyCurrentScope $ const s' printScope "mod.inst" 40 "copied record module" return (A.RecordModuleInstance m1, copyInfo, adir) -- | @checkModuleMacro mkApply range access concreteName modapp open dir@ -- -- Preserves local variables. checkModuleMacro :: (ToConcrete a, Pretty (ConOfAbs a)) => (ModuleInfo -> Erased -> ModuleName -> A.ModuleApplication -> ScopeCopyInfo -> A.ImportDirective -> a) -> OpenKind -> Range -> Access -> Erased -> C.Name -> C.ModuleApplication -> OpenShortHand -> C.ImportDirective -> ScopeM a checkModuleMacro apply kind r p e x modapp open dir = do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking ModuleMacro " ++ prettyShow x ] dir <- notPublicWithoutOpen open dir m0 <- toAbstract (NewModuleName x) reportSDoc "scope.decl" 90 $ "NewModuleName: m0 =" <+> prettyA m0 printScope "mod.inst" 40 "module macro" -- If we're opening a /named/ module, the import directive is -- applied to the "open", otherwise to the module itself. However, -- "public" is always applied to the "open". let (moduleDir, openDir) = case (open, isNoName x) of (DoOpen, False) -> (defaultImportDir, dir) (DoOpen, True) -> ( dir { publicOpen = Nothing } , defaultImportDir { publicOpen = publicOpen dir } ) (DontOpen, _) -> (dir, defaultImportDir) -- Restore the locals after module application has been checked. (modapp', copyInfo, adir') <- withLocalVars $ checkModuleApplication modapp m0 x moduleDir printScope "mod.inst.app" 40 "checkModuleMacro, after checkModuleApplication" reportSDoc "scope.decl" 90 $ "after mod app: trying to print m0 ..." reportSDoc "scope.decl" 90 $ "after mod app: m0 =" <+> prettyA m0 bindModule p x m0 reportSDoc "scope.decl" 90 $ "after bindMod: m0 =" <+> prettyA m0 printScope "mod.inst.copy.after" 40 "after copying" -- Open the module if DoOpen. -- Andreas, 2014-09-02: @openModule@ might shadow some locals! adir <- case open of DontOpen -> return adir' DoOpen -> do adir'' <- openModule kind (Just m0) (C.QName x) openDir -- Andreas, 2020-05-14, issue #4656 -- Keep the more meaningful import directive for highlighting -- (the other one is a defaultImportDir). return $ if isNoName x then adir' else adir'' printScope "mod.inst" 40 $ show open reportSDoc "scope.decl" 90 $ "after open : m0 =" <+> prettyA m0 stripNoNames printScope "mod.inst.strip" 30 $ "after stripping" reportSDoc "scope.decl" 90 $ "after stripNo: m0 =" <+> prettyA m0 let m = m0 `withRangesOf` singleton x adecl = apply info e m modapp' copyInfo adir reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked ModuleMacro " ++ prettyShow x ] reportSLn "scope.decl" 90 $ "info = " ++ show info reportSLn "scope.decl" 90 $ "m = " ++ prettyShow m reportSLn "scope.decl" 90 $ "modapp' = " ++ show modapp' reportSDoc "scope.decl" 90 $ return $ pretty copyInfo reportSDoc "scope.decl" 70 $ nest 2 $ prettyA adecl return adecl where info = ModuleInfo { minfoRange = r , minfoAsName = Nothing , minfoAsTo = renamingRange dir , minfoOpenShort = Just open , minfoDirective = Just dir } -- | The @public@ keyword must only be used together with @open@. notPublicWithoutOpen :: OpenShortHand -> C.ImportDirective -> ScopeM C.ImportDirective notPublicWithoutOpen DoOpen = return notPublicWithoutOpen DontOpen = uselessPublic UselessPublicNoOpen -- | Warn about useless @public@. uselessPublic :: UselessPublicReason -> C.ImportDirective -> ScopeM C.ImportDirective uselessPublic reason dir = do whenJust (publicOpen dir) \ r -> setCurrentRange r $ warning $ UselessPublic reason return $ dir { publicOpen = Nothing } -- | Computes the range of all the \"to\" keywords used in a renaming -- directive. renamingRange :: C.ImportDirective -> Range renamingRange = getRange . map renToRange . impRenaming -- | Scope check a 'NiceOpen'. checkOpen :: Range -- ^ Range of @open@ statement. -> Maybe A.ModuleName -- ^ Resolution of concrete module name (if already resolved). -> C.QName -- ^ Module to open. -> C.ImportDirective -- ^ Scope modifier. -> ScopeM (ModuleInfo, A.ModuleName, A.ImportDirective) -- ^ Arguments of 'A.Open' checkOpen r mam x dir = do cm <- getCurrentModule reportSDoc "scope.decl" 70 $ do vcat $ [ text "scope checking NiceOpen " <> return (pretty x) , text " getCurrentModule = " <> prettyA cm , text $ " getCurrentModule (raw) = " ++ show cm , text $ " C.ImportDirective = " ++ prettyShow dir ] -- Andreas, 2017-01-01, issue #2377: warn about useless `public` dir <- if null cm then uselessPublic UselessPublicPreamble dir else return dir m <- caseMaybe mam (toAbstract (OldModuleName x)) return printScope "open" 40 $ "opening " ++ prettyShow x adir <- openModule TopOpenModule (Just m) x dir printScope "open" 40 $ "result:" let minfo = ModuleInfo { minfoRange = r , minfoAsName = Nothing , minfoAsTo = renamingRange dir , minfoOpenShort = Nothing , minfoDirective = Just dir } let adecls = [A.Open minfo m adir] reportSDoc "scope.decl" 70 $ vcat $ text ( "scope checked NiceOpen " ++ prettyShow x ) : map (nest 2 . prettyA) adecls return (minfo, m, adir) -- | Check a literal, issuing an error warning for bad literals. checkLiteral :: Literal -> ScopeM () checkLiteral = \case LitChar c -> when (isSurrogateCodePoint c) $ warning $ InvalidCharacterLiteral c LitNat _ -> return () LitWord64 _ -> return () LitFloat _ -> return () LitString _ -> return () LitQName _ -> return () LitMeta _ _ -> return () {-------------------------------------------------------------------------- Translation --------------------------------------------------------------------------} concreteToAbstract_ :: ToAbstract c => c -> ScopeM (AbsOfCon c) concreteToAbstract_ = toAbstract concreteToAbstract :: ToAbstract c => ScopeInfo -> c -> ScopeM (AbsOfCon c) concreteToAbstract scope x = withScope_ scope (toAbstract x) -- | Things that can be translated to abstract syntax are instances of this -- class. class ToAbstract c where type AbsOfCon c toAbstract :: c -> ScopeM (AbsOfCon c) -- | This function should be used instead of 'toAbstract' for things that need -- to keep track of precedences to make sure that we don't forget about it. toAbstractCtx :: ToAbstract c => Precedence -> c-> ScopeM (AbsOfCon c) toAbstractCtx ctx c = withContextPrecedence ctx $ toAbstract c --UNUSED Liang-Ting Chen 2019-07-16 --toAbstractTopCtx :: ToAbstract c a => c -> ScopeM a --toAbstractTopCtx = toAbstractCtx TopCtx toAbstractHiding :: (LensHiding h, ToAbstract c) => h -> c -> ScopeM (AbsOfCon c) toAbstractHiding h | visible h = toAbstract -- don't change precedence if visible toAbstractHiding _ = toAbstractCtx TopCtx --UNUSED Liang-Ting Chen 2019-07-16 --setContextCPS :: Precedence -> (a -> ScopeM b) -> -- ((a -> ScopeM b) -> ScopeM b) -> ScopeM b --setContextCPS p ret f = do -- old <- useScope scopePrecedence -- withContextPrecedence p $ f $ \ x -> setContextPrecedence old >> ret x -- --localToAbstractCtx :: ToAbstract c => -- Precedence -> c -> (AbsOfCon -> ScopeM (AbsOfCon c)) -> ScopeM (AbsOfCon c) --localToAbstractCtx ctx c ret = setContextCPS ctx ret (localToAbstract c) -- | This operation does not affect the scope, i.e. the original scope -- is restored upon completion. localToAbstract :: ToAbstract c => c -> (AbsOfCon c -> ScopeM b) -> ScopeM b localToAbstract x ret = fst <$> localToAbstract' x ret -- | Like 'localToAbstract' but returns the scope after the completion of the -- second argument. localToAbstract' :: ToAbstract c => c -> (AbsOfCon c -> ScopeM b) -> ScopeM (b, ScopeInfo) localToAbstract' x ret = do scope <- getScope withScope scope $ ret =<< toAbstract x instance ToAbstract () where type AbsOfCon () = () toAbstract = pure instance (ToAbstract c1, ToAbstract c2) => ToAbstract (c1, c2) where type AbsOfCon (c1, c2) = (AbsOfCon c1, AbsOfCon c2) toAbstract (x,y) = (,) <$> toAbstract x <*> toAbstract y instance (ToAbstract c1, ToAbstract c2, ToAbstract c3) => ToAbstract (c1, c2, c3) where type AbsOfCon (c1, c2, c3) = (AbsOfCon c1, AbsOfCon c2, AbsOfCon c3) toAbstract (x,y,z) = flatten <$> toAbstract (x,(y,z)) where flatten (x,(y,z)) = (x,y,z) instance ToAbstract c => ToAbstract [c] where type AbsOfCon [c] = [AbsOfCon c] toAbstract = mapM toAbstract instance ToAbstract c => ToAbstract (List1 c) where type AbsOfCon (List1 c) = List1 (AbsOfCon c) toAbstract = mapM toAbstract instance (ToAbstract c1, ToAbstract c2) => ToAbstract (Either c1 c2) where type AbsOfCon (Either c1 c2) = Either (AbsOfCon c1) (AbsOfCon c2) toAbstract = traverseEither toAbstract toAbstract instance ToAbstract c => ToAbstract (Maybe c) where type AbsOfCon (Maybe c) = Maybe (AbsOfCon c) toAbstract = traverse toAbstract -- Names ------------------------------------------------------------------ data NewName a = NewName { newBinder :: A.BindingSource -- what kind of binder? , newName :: a } deriving (Functor) data OldQName = OldQName C.QName -- ^ Concrete name to be resolved. (Maybe (Set1 A.Name)) -- ^ If a set is given, then the first name must -- correspond to one of the names in the set. -- | We sometimes do not want to fail hard if the name is not actually -- in scope because we have a strategy to recover from this problem -- (e.g. drop the offending COMPILE pragma) data MaybeOldQName = MaybeOldQName OldQName -- | Wrapper for a concrete name that we already bound to an 'A.Def'. -- newtype OldName a = OldName a -- | Wrapper to resolve a name in a pattern. data PatName = PatName C.QName -- ^ Concrete name to be resolved in a pattern. (Maybe (Set1 A.Name)) -- ^ If a set is given, then the first name must correspond to one -- of the names in the set. Hiding -- ^ If pattern variable is hidden, its status is indicated in 'Hiding'. DisplayLHS -- ^ If we parse the lhs of a 'DisplayPragma', -- names of arbitrary definitions count as constructors. instance ToAbstract (NewName C.Name) where type AbsOfCon (NewName C.Name) = A.Name toAbstract (NewName b x) = do y <- freshAbstractName_ x bindVariable b x y return y instance ToAbstract (NewName C.BoundName) where type AbsOfCon (NewName C.BoundName) = A.BindName toAbstract NewName{ newBinder = b, newName = BName{ boundName = x, bnameFixity = fx }} = do y <- freshAbstractName fx x bindVariable b x y return $ A.BindName y instance ToAbstract OldQName where type AbsOfCon OldQName = A.Expr toAbstract q@(OldQName x _) = fromMaybeM (notInScopeError x) $ toAbstract (MaybeOldQName q) instance ToAbstract MaybeOldQName where type AbsOfCon MaybeOldQName = Maybe A.Expr toAbstract (MaybeOldQName (OldQName x ns)) = do qx <- resolveName' allKindsOfNames ns x reportSLn "scope.name" 30 $ "resolved " ++ prettyShow x ++ ": " ++ prettyShow qx case qx of VarName x' _ -> return $ Just $ A.Var x' DefinedName _ d suffix -> do raiseWarningsOnUsage $ anameName d -- then we take note of generalized names used addGeneralizable d -- and then we return the name return $ withSuffix suffix $ nameToExpr d where withSuffix NoSuffix e = Just e withSuffix s@Suffix{} (A.Def x) = Just $ A.Def' x s withSuffix _ _ = Nothing FieldName ds -> ambiguous (A.Proj ProjPrefix) ds ConstructorName _ ds -> ambiguous A.Con ds PatternSynResName ds -> ambiguous A.PatternSyn ds UnknownName -> do reportSLn "scope.name.unknown" 80 $ "resolved : unknown " ++ prettyShow x pure Nothing where ambiguous :: (AmbiguousQName -> A.Expr) -> List1 AbstractName -> ScopeM (Maybe A.Expr) ambiguous f ds = do let xs = fmap anameName ds raiseWarningsOnUsageIfUnambiguous xs return $ Just $ f $ AmbQ xs -- Note: user warnings on ambiguous names will be raised by the type checker, -- see 'storeDisambiguatedName'. raiseWarningsOnUsageIfUnambiguous :: List1 A.QName -> ScopeM () raiseWarningsOnUsageIfUnambiguous = \case x :| [] -> raiseWarningsOnUsage x _ -> return () -- | Resolve a name and fail hard if it is not in scope. -- resolveQName :: C.QName -> ScopeM ResolvedName resolveQName x = resolveName x >>= \case UnknownName -> notInScopeError x q -> q <$ addGeneralizable q -- Issue #7575: -- If the name is a @variable@, add it to the things we wish to generalize. -- If generalization is not supported here, this will throw an error. -- | A name resolved in a pattern. data APatName = VarPatName A.Name -- ^ Pattern variable. | ConPatName (List1 AbstractName) -- ^ A (possibly ambiguous) constructor. -- When parsing a 'C.DisplayPragma', this can be the name of a definition. | PatternSynPatName (List1 AbstractName) -- ^ A (possibly ambiguous) pattern synonym. | DefPatName AbstractName -- ^ A defined name, only possible when checking a 'C.DisplayPragma'. instance ToAbstract PatName where type AbsOfCon PatName = APatName toAbstract (PatName x ns h displayLhs) = do reportSLn "scope.pat" 30 $ "checking pattern name: " ++ prettyShow x let kinds = applyWhen displayLhs (defNameKinds ++) conLikeNameKinds rx <- resolveName' (someKindsOfNames kinds) ns x -- Andreas, 2013-03-21 ignore conflicting names which cannot -- be meant since we are in a pattern -- Andreas, 2020-04-11 CoConName: -- coinductive constructors will be rejected later, in the type checker reportSLn "scope.pat" 40 $ "resolved as " ++ prettyShow rx case rx of ConstructorName _ ds -> ConPatName ds <$ do reportSLn "scope.pat" 30 $ "it was a con: " ++ prettyShow (fmap anameName ds) PatternSynResName ds -> PatternSynPatName ds <$ do reportSLn "scope.pat" 30 $ "it was a pat syn: " ++ prettyShow (fmap anameName ds) DefinedName _ d suffix | YesDisplayLHS <- displayLhs, null suffix -> DefPatName d <$ do reportSLn "scope.pat" 30 $ "it was a def: " ++ prettyShow (anameName d) _ -> case x of C.QName y -> VarPatName <$> bindPatternVariable h y C.Qual{} -> typeError $ InvalidPattern $ C.IdentP True x -- | Translate and possibly bind a pattern variable -- (which could have been bound before due to non-linearity). bindPatternVariable :: Hiding -> C.Name -> ScopeM A.Name bindPatternVariable h x = do y <- (AssocList.lookup x <$> getVarsToBind) >>= \case Just (LocalVar y _ _) -> do reportSLn "scope.pat" 30 $ "it was a old var: " ++ prettyShow x return $ setRange (getRange x) y Nothing -> do reportSLn "scope.pat" 30 $ "it was a new var: " ++ prettyShow x freshAbstractName_ x addVarToBind x $ LocalVar y (PatternBound h) [] return y class ToQName a where toQName :: a -> C.QName instance ToQName C.Name where toQName = C.QName instance ToQName C.QName where toQName = id -- | Should be a defined name. instance ToQName a => ToAbstract (OldName a) where type AbsOfCon (OldName a) = A.QName toAbstract (OldName x) = do resolveName (toQName x) >>= \case DefinedName _ d NoSuffix -> return $ anameName d DefinedName _ d Suffix{} -> __IMPOSSIBLE__ VarName{} -> __IMPOSSIBLE__ UnknownName -> __IMPOSSIBLE__ -- We can get the cases below for DISPLAY pragmas ConstructorName _ ds -> return $ anameName (List1.head ds) -- We'll throw out this one, so it doesn't matter which one we pick FieldName ds -> return $ anameName (List1.head ds) PatternSynResName ds -> return $ anameName (List1.head ds) newtype NewModuleName = NewModuleName C.Name newtype NewModuleQName = NewModuleQName C.QName newtype OldModuleName = OldModuleName C.QName freshQModule :: A.ModuleName -> C.Name -> ScopeM A.ModuleName freshQModule m x = A.qualifyM m . mnameFromList1 . singleton <$> freshAbstractName_ x checkForModuleClash :: C.Name -> ScopeM () checkForModuleClash x = do ms :: [AbstractModule] <- scopeLookup (C.QName x) <$> getScope List1.unlessNull ms \ ms -> do reportSLn "scope.clash" 40 $ "clashing modules ms = " ++ prettyShow ms reportSLn "scope.clash" 60 $ "clashing modules ms = " ++ show ms setCurrentRange x $ typeError $ ShadowedModule x $ fmap ((`withRangeOf` x) . amodName) ms instance ToAbstract NewModuleName where type AbsOfCon NewModuleName = A.ModuleName toAbstract (NewModuleName x) = do checkForModuleClash x m <- getCurrentModule y <- freshQModule m x createModule Nothing y return y instance ToAbstract NewModuleQName where type AbsOfCon NewModuleQName = A.ModuleName toAbstract (NewModuleQName m) = toAbs noModuleName m where toAbs m (C.QName x) = do y <- freshQModule m x createModule Nothing y return y toAbs m (C.Qual x q) = do m' <- freshQModule m x toAbs m' q instance ToAbstract OldModuleName where type AbsOfCon OldModuleName = A.ModuleName toAbstract (OldModuleName q) = setCurrentRange q $ do amodName <$> resolveModule q -- Expressions ------------------------------------------------------------ --UNUSED Liang-Ting Chen 2019-07-16 ---- | Peel off 'C.HiddenArg' and represent it as an 'NamedArg'. --mkNamedArg :: C.Expr -> NamedArg C.Expr --mkNamedArg (C.HiddenArg _ e) = Arg (hide defaultArgInfo) e --mkNamedArg (C.InstanceArg _ e) = Arg (makeInstance defaultArgInfo) e --mkNamedArg e = Arg defaultArgInfo $ unnamed e -- | Peel off 'C.HiddenArg' and represent it as an 'Arg', throwing away any name. mkArg' :: ArgInfo -> C.Expr -> Arg C.Expr mkArg' info (C.HiddenArg _ e) = Arg (hide info) $ namedThing e mkArg' info (C.InstanceArg _ e) = Arg (makeInstance info) $ namedThing e mkArg' info e = Arg (setHiding NotHidden info) e inferParenPreference :: C.Expr -> ParenPreference inferParenPreference C.Paren{} = PreferParen inferParenPreference _ = PreferParenless -- | Parse a possibly dotted and braced @C.Expr@ as @A.Expr@, -- interpreting dots as relevance and braces as hiding. -- Only accept a layer of dotting/bracing if the respective accumulator is @Nothing@. toAbstractDotHiding :: Maybe Relevance -> Maybe Hiding -> Precedence -> C.Expr -> ScopeM (A.Expr, Relevance, Hiding) toAbstractDotHiding mr mh prec e = do reportSLn "scope.irrelevance" 100 $ "toAbstractDotHiding: " ++ render (pretty e) traceCall (ScopeCheckExpr e) $ case e of C.RawApp _ es -> toAbstractDotHiding mr mh prec =<< parseApplication es C.Paren _ e -> toAbstractDotHiding mr mh TopCtx e C.Dot kwr e | Nothing <- mr -> toAbstractDotHiding (Just $ Irrelevant $ OIrrDot $ getRange kwr) mh prec e C.DoubleDot kwr e | Nothing <- mr -> toAbstractDotHiding (Just $ ShapeIrrelevant $ OShIrrDotDot $ getRange kwr) mh prec e C.HiddenArg _ (Named Nothing e) | Nothing <- mh -> toAbstractDotHiding mr (Just Hidden) TopCtx e C.InstanceArg _ (Named Nothing e) | Nothing <- mh -> toAbstractDotHiding mr (Just $ Instance NoOverlap) TopCtx e e -> (, fromMaybe relevant mr, fromMaybe NotHidden mh) <$> toAbstractCtx prec e -- | Translate concrete expression under at least one binder into nested -- lambda abstraction in abstract syntax. toAbstractLam :: Range -> List1 C.LamBinding -> C.Expr -> Precedence -> ScopeM A.Expr toAbstractLam r bs e ctx = do -- Translate the binders lvars0 <- getLocalVars localToAbstract (fmap (C.DomainFull . makeDomainFull) bs) $ \ bs -> do lvars1 <- getLocalVars checkNoShadowing lvars0 lvars1 -- Translate the body e <- toAbstractCtx ctx e -- We have at least one binder. Get first @b@ and rest @bs@. return $ case List1.catMaybes bs of -- Andreas, 2020-06-18 -- There is a pathological case in which we end up without binder: -- λ (let -- mutual -- warning: empty mutual block -- ) -> Set [] -> e b:bs -> A.Lam (ExprRange r) b $ foldr mkLam e bs where mkLam b e = A.Lam (ExprRange $ fuseRange b e) b e -- | Scope check extended lambda expression. scopeCheckExtendedLam :: Range -> Erased -> List1 C.LamClause -> ScopeM A.Expr scopeCheckExtendedLam r e cs = do whenM isInsideDotPattern $ typeError $ NotAllowedInDotPatterns PatternLambdas -- Find an unused name for the extended lambda definition. cname <- freshConcreteName r 0 extendedLambdaName name <- freshAbstractName_ cname a <- asksTC (^. lensIsAbstract) reportSDoc "scope.extendedLambda" 30 $ vcat [ text $ "new extended lambda name (" ++ show a ++ "): " ++ prettyShow name ] verboseS "scope.extendedLambda" 60 $ do forM_ cs $ \ c -> do reportSLn "scope.extendedLambda" 60 $ "extended lambda lhs: " ++ show (C.lamLHS c) qname <- qualifyName_ name bindName privateAccessInserted FunName cname qname -- Andreas, 2019-08-20 -- Keep the following __IMPOSSIBLE__, which is triggered by -v scope.decl.trace:80, -- for testing issue #4016. d <- C.FunDef r [] a NotInstanceDef __IMPOSSIBLE__ __IMPOSSIBLE__ cname . List1.toList <$> do forM cs $ \ (LamClause ps rhs ca) -> do let p = C.rawAppP $ killRange (IdentP True $ C.QName cname) :| ps let lhs = C.LHS p [] [] return $ C.Clause cname ca lhs rhs NoWhere [] scdef <- toAbstract d -- Create the abstract syntax for the extended lambda. case scdef of A.ScopedDecl si [A.FunDef di qname' cs] -> do setScope si -- This turns into an A.ScopedExpr si $ A.ExtendedLam... return $ A.ExtendedLam (ExprRange r) di e qname' $ List1.fromListSafe __IMPOSSIBLE__ cs _ -> __IMPOSSIBLE__ -- | Scope check an expression. instance ToAbstract C.Expr where type AbsOfCon C.Expr = A.Expr toAbstract e = traceCall (ScopeCheckExpr e) $ annotateExpr $ case e of -- Names Ident x -> toAbstract (OldQName x Nothing) KnownIdent _ x -> toAbstract (OldQName x Nothing) -- Just discard the syntax highlighting information. -- Literals C.Lit r l -> do checkLiteral l case l of LitNat n -> do let builtin | n < 0 = Just <$> primFromNeg -- negative literals are only allowed if FROMNEG is defined | otherwise = ensureInScope =<< getBuiltin' builtinFromNat builtin >>= \case Just (I.Def q _) -> return $ mkApp q $ A.Lit i $ LitNat $ abs n _ -> return alit LitString s -> do getBuiltin' builtinFromString >>= ensureInScope >>= \case Just (I.Def q _) -> return $ mkApp q alit _ -> return alit _ -> return alit where i = ExprRange r alit = A.Lit i l mkApp q = A.App (defaultAppInfo r) (A.Def q) . defaultNamedArg -- #4925: Require fromNat/fromNeg to be in scope *unqualified* for literal overloading to -- apply. ensureInScope :: Maybe I.Term -> ScopeM (Maybe I.Term) ensureInScope v@(Just (I.Def q _)) = ifM (isNameInScopeUnqualified q <$> getScope) (return v) (return Nothing) ensureInScope _ = return Nothing -- Meta variables C.QuestionMark r n -> do scope <- getScope -- Andreas, 2014-04-06 create interaction point. ii <- registerInteractionPoint True r n let info = MetaInfo { metaRange = r , metaScope = scope , metaNumber = Nothing , metaNameSuggestion = "" , metaKind = UnificationMeta } return $ A.QuestionMark info ii C.Underscore r n -> do scope <- getScope return $ A.Underscore $ MetaInfo { metaRange = r , metaScope = scope , metaNumber = __IMPOSSIBLE__ =<< n , metaNameSuggestion = fromMaybe "" n , metaKind = UnificationMeta } -- Raw application C.RawApp r es -> do e <- parseApplication es toAbstract e -- Application C.App r e1 e2 -> do -- Andreas, 2021-02-10, issue #3289: reject @e {.p}@ and @e ⦃ .p ⦄@. -- Raise an error if argument is a C.Dot with Hiding info. case namedArg e2 of C.Dot{} | notVisible e2 -> setCurrentRange e2 $ typeError $ IllegalHidingInPostfixProjection e2 _ -> return () let parenPref = inferParenPreference (namedArg e2) info = (defaultAppInfo r) { appOrigin = UserWritten, appParens = parenPref } e1 <- toAbstractCtx FunctionCtx e1 e2 <- toAbstractCtx (ArgumentCtx parenPref) e2 return $ A.App info e1 e2 -- Operator application C.OpApp r op ns es -> toAbstractOpApp op ns es C.KnownOpApp _ r op ns es -> toAbstractOpApp op ns es -- With application C.WithApp r e es -> do e <- toAbstractCtx WithFunCtx e es <- mapM (toAbstractCtx WithArgCtx) es return $ A.WithApp (ExprRange r) e es -- Misplaced hidden argument. We can treat these as parentheses and -- raise an error-warning C.HiddenArg _ e' -> do warning (HiddenNotInArgumentPosition e) toAbstract (namedThing e') C.InstanceArg _ e' -> do warning (InstanceNotInArgumentPosition e) toAbstract (namedThing e') -- Lambda C.AbsurdLam r h -> return $ A.AbsurdLam (ExprRange r) h C.Lam r bs e -> toAbstractLam r bs e TopCtx -- Extended Lambda C.ExtendedLam r e cs -> scopeCheckExtendedLam r e cs -- Relevant and irrelevant non-dependent function type C.Fun r (Arg info1 e1) e2 -> do let arg = mkArg' info1 e1 let mr = case getRelevance arg of Relevant{} -> Nothing r -> Just r let mh = case getHiding arg of NotHidden -> Nothing h -> Just h Arg info (e1', rel, hid) <- traverse (toAbstractDotHiding mr mh FunctionSpaceDomainCtx) arg let updRel = applyUnless (isRelevant rel) $ setRelevance rel let updHid = case hid of NotHidden -> id hid -> setHiding hid A.Fun (ExprRange r) (Arg (updRel $ updHid info) e1') <$> toAbstractCtx TopCtx e2 -- Dependent function type e0@(C.Pi tel e) -> do lvars0 <- getLocalVars localToAbstract tel $ \tel -> do lvars1 <- getLocalVars checkNoShadowing lvars0 lvars1 e <- toAbstractCtx TopCtx e let info = ExprRange (getRange e0) return $ A.mkPi info (List1.catMaybes tel) e -- Let e0@(C.Let _ ds (Just e)) -> ifM isInsideDotPattern (typeError $ NotAllowedInDotPatterns LetExpressions) {-else-} do localToAbstract (LetDefs ExprLetDef ds) $ \ds' -> do e <- toAbstractCtx TopCtx e let info = ExprRange (getRange e0) return $ A.mkLet info ds' e C.Let _ _ Nothing -> typeError $ NotAValidLetExpression MissingBody -- Record construction C.Rec r fs -> do fs' <- toAbstractCtx TopCtx fs let ds' = [ d | Right (_, Just d) <- fs' ] fs'' = map (mapRight fst) fs' i = ExprRange r return $ A.mkLet i ds' (A.Rec i fs'') -- Record update C.RecUpdate r e fs -> do A.RecUpdate (ExprRange r) <$> toAbstract e <*> toAbstractCtx TopCtx fs -- Parenthesis C.Paren _ e -> toAbstractCtx TopCtx e -- Idiom brackets C.IdiomBrackets r es -> toAbstractCtx TopCtx =<< parseIdiomBracketsSeq r es -- Do notation C.DoBlock r ss -> toAbstractCtx TopCtx =<< desugarDoNotation r ss -- Post-fix projections e0@(C.Dot _kwr e) -> A.Dot (ExprRange $ getRange e0) <$> toAbstract e -- Pattern things C.As _ _ _ -> notAnExpression e C.Absurd _ -> notAnExpression e -- Impossible things C.Equal{} -> syntaxError "unexpected '='" -- triggered by 'f = (x = e)' C.Ellipsis _ -> syntaxError "unexpected '...'" -- triggered by 'f = ...' C.DoubleDot _ _ -> __IMPOSSIBLE__ -- Quoting C.Quote r -> return $ A.Quote (ExprRange r) C.QuoteTerm r -> return $ A.QuoteTerm (ExprRange r) C.Unquote r -> return $ A.Unquote (ExprRange r) C.Tactic r e -> syntaxError "'tactic' can only appear in attributes" -- DontCare C.DontCare e -> A.DontCare <$> toAbstract e -- forall-generalize C.Generalized e -> do (s, e) <- collectGeneralizables $ toAbstract e pure $ A.generalized s e instance ToAbstract C.ModuleAssignment where type AbsOfCon C.ModuleAssignment = (A.ModuleName, Maybe A.LetBinding) toAbstract (C.ModuleAssignment m es i) | null es && isDefaultImportDir i = (, Nothing) <$> toAbstract (OldModuleName m) | otherwise = do x <- C.NoName (getRange m) <$> fresh r <- checkModuleMacro LetApply LetOpenModule (getRange (m, es, i)) PublicAccess defaultErased x (C.SectionApp (getRange (m , es)) [] m es) DontOpen i case r of LetApply _ _ m' _ _ _ -> return (m', Just r) _ -> __IMPOSSIBLE__ instance ToAbstract c => ToAbstract (FieldAssignment' c) where type AbsOfCon (FieldAssignment' c) = FieldAssignment' (AbsOfCon c) toAbstract = traverse toAbstract instance ToAbstract (C.Binder' (NewName C.BoundName)) where type AbsOfCon (C.Binder' (NewName C.BoundName)) = A.Binder toAbstract (C.Binder p o n) = do let name = C.boundName $ newName n -- If we do have a pattern then the variable needs to be inserted -- so we do need a proper internal name for it. -- -- Amy, 2024-10-18: If we generated a name, then mark the binder -- name as being inserted. (n, o) <- if not (isNoName name && isJust p) then pure (n, o) else do n' <- freshConcreteName (getRange $ newName n) 0 patternInTeleName pure (fmap (\ n -> n { C.boundName = n' }) n, InsertedBinderName) n <- toAbstract n -- Expand puns if optHiddenArgumentPuns is True. p <- traverse expandPunsOpt p -- Actually parsing the pattern, checking it is linear, -- and bind its variables p <- traverse parsePattern p p <- toAbstract p checkPatternLinearity p $ \ys -> typeError $ RepeatedVariablesInPattern ys bindVarsToBind p <- toAbstract p pure $ A.Binder p o n instance ToAbstract C.LamBinding where type AbsOfCon C.LamBinding = Maybe A.LamBinding toAbstract (C.DomainFree x) = do tac <- scopeCheckTactic x Just . A.DomainFree tac <$> toAbstract (updateNamedArg (fmap $ NewName LambdaBound) x) toAbstract (C.DomainFull tb) = fmap A.DomainFull <$> toAbstract tb -- | Scope check tactic attribute, make sure they are only used in hidden arguments. scopeCheckTactic :: NamedArg C.Binder -> ScopeM A.TacticAttribute scopeCheckTactic x = do let ctac = bnameTactic $ C.binderName $ namedArg x let r = getRange ctac setCurrentRange r $ do tac <- traverse toAbstract ctac if null tac || hidden x then return tac else empty <$ warning UselessTactic makeDomainFull :: C.LamBinding -> C.TypedBinding makeDomainFull (C.DomainFull b) = b makeDomainFull (C.DomainFree x) = C.TBind r (singleton x) $ C.Underscore r Nothing where r = getRange x instance ToAbstract C.TypedBinding where type AbsOfCon C.TypedBinding = Maybe A.TypedBinding toAbstract (C.TBind r xs t) = do t' <- toAbstractCtx TopCtx t -- Invariant: all tactics are the same -- (distributed in the parser, TODO: don't) let tacArg = List1.find (not . null . bnameTactic . C.binderName . namedArg) xs tac <- maybe (pure empty) scopeCheckTactic tacArg let fin = all (bnameIsFinite . C.binderName . namedArg) xs xs' <- toAbstract $ fmap (updateNamedArg (fmap $ NewName LambdaBound)) xs return $ Just $ A.TBind r (TypedBindingInfo tac fin) xs' t' toAbstract (C.TLet r ds) = A.mkTLet r <$> toAbstract (LetDefs ExprLetDef ds) -- | Scope check a module (top level function). -- scopeCheckNiceModule :: Range -> Access -> Erased -> C.Name -> C.Telescope -> ScopeM [A.Declaration] -> ScopeM A.Declaration -- ^ The returned declaration is an 'A.Section'. scopeCheckNiceModule r p e name tel checkDs = do -- Andreas, 2025-03-29: clear @envCheckingWhere@ -- We are no longer directly in a @where@ block if we enter a module. localTC (\ env -> env{ envCheckingWhere = C.NoWhere_ }) $ checkWrappedModules p (splitModuleTelescope tel) where -- Andreas, 2013-12-10: -- If the module telescope contains open statements -- or module macros (Issue 1299), -- add an extra anonymous module around the current one. -- Otherwise, the open statements would create -- identifiers in the parent scope of the current module. -- But open statements in the module telescope should -- only affect the current module! -- Ulf, 2024-11-21 (#7440): We need the wrapper module to have to correct parameters, otherwise -- open public of a module created in the telescope will behave incorrectly when applying the -- outer module. splitModuleTelescope :: C.Telescope -> [C.Telescope] splitModuleTelescope [] = [[]] splitModuleTelescope (b : tel) = case b of C.TLet _ ds | any needsWrapper ds -> [] : addBind b (splitModuleTelescope tel) _ -> addBind b $ splitModuleTelescope tel where addBind b (tel : ms) = (b : tel) : ms addBind _ [] = __IMPOSSIBLE__ needsWrapper C.ModuleMacro{} = True needsWrapper C.Open{} = True needsWrapper C.Import{} = True -- not __IMPOSSIBLE__, see Issue #1718 -- However, it does not matter what we return here, as this will -- become an error later: "Not a valid let-declaration". -- (Andreas, 2015-11-17) needsWrapper (C.Mutual _ ds) = any needsWrapper ds needsWrapper (C.Abstract _ ds) = any needsWrapper ds needsWrapper (C.Private _ _ ds) = any needsWrapper ds needsWrapper _ = False checkWrappedModules :: Access -> [C.Telescope] -> ScopeM A.Declaration checkWrappedModules _ [] = __IMPOSSIBLE__ checkWrappedModules p [tel] = scopeCheckNiceModule_ r p name tel checkDs checkWrappedModules p (tel : tels) = scopeCheckNiceModule_ r p noName_ tel $ singleton <$> checkWrappedModules PublicAccess tels -- Inner modules are PublicAccess (see #4350) -- The actual workhorse: scopeCheckNiceModule_ :: Range -> Access -> C.Name -> C.Telescope -> ScopeM [A.Declaration] -> ScopeM A.Declaration scopeCheckNiceModule_ r p name tel checkDs = do -- Check whether we are dealing with an anonymous module. -- This corresponds to a Coq/LEGO section. (name, p', open) <- do if isNoName name then do (i :: NameId) <- fresh return (C.NoName (getRange name) i, privateAccessInserted, True) else return (name, p, False) -- Check and bind the module, using the supplied check for its contents. aname <- toAbstract (NewModuleName name) d <- snd <$> do scopeCheckModule r e (C.QName name) aname tel checkDs bindModule p' name aname -- If the module was anonymous open it public -- unless it's private, in which case we just open it (#2099) when open $ void $ -- We can discard the returned default A.ImportDirective. openModule TopOpenModule (Just aname) (C.QName name) $ defaultImportDir { publicOpen = boolToMaybe (p == PublicAccess) empty } return d -- | We for now disallow let-bindings in @data@ and @record@ telescopes. -- This due "nested datatypes"; there is no easy interpretation of -- @ -- data D (A : Set) (open M A) (b : B) : Set where -- c : D (A × A) b → D A b -- @ -- where @B@ is brought in scope by @open M A@. class EnsureNoLetStms a where ensureNoLetStms :: a -> ScopeM () default ensureNoLetStms :: (Foldable t, EnsureNoLetStms b, t b ~ a) => a -> ScopeM () ensureNoLetStms = traverse_ ensureNoLetStms instance EnsureNoLetStms C.Binder where ensureNoLetStms arg@(C.Binder p _ n) = when (isJust p) $ typeError $ IllegalPatternInTelescope arg instance EnsureNoLetStms C.TypedBinding where ensureNoLetStms = \case tb@C.TLet{} -> typeError $ IllegalLetInTelescope tb C.TBind _ xs _ -> traverse_ (ensureNoLetStms . namedArg) xs instance EnsureNoLetStms a => EnsureNoLetStms (LamBinding' a) where ensureNoLetStms = \case -- GA: DO NOT use traverse here: `LamBinding'` only uses its parameter in -- the DomainFull constructor so we would miss out on some potentially -- illegal lets! Cf. #4402 C.DomainFree a -> ensureNoLetStms a C.DomainFull a -> ensureNoLetStms a instance EnsureNoLetStms a => EnsureNoLetStms (Named_ a) where instance EnsureNoLetStms a => EnsureNoLetStms (NamedArg a) where instance EnsureNoLetStms a => EnsureNoLetStms [a] where -- | Returns the scope inside the checked module. scopeCheckModule :: Range -- ^ The range of the module. -> Erased -- ^ Is the module erased? -> C.QName -- ^ The concrete name of the module. -> A.ModuleName -- ^ The abstract name of the module. -> C.Telescope -- ^ The module telescope. -> ScopeM [A.Declaration] -- ^ The code for checking the module contents. -> ScopeM (ScopeInfo, A.Declaration) -- ^ The returned declaration is an 'A.Section'. scopeCheckModule r e x qm tel checkDs = do printScope "module" 40 $ "checking module " ++ prettyShow x -- Andreas, 2013-12-10: Telescope does not live in the new module -- but its parent, so check it before entering the new module. -- This is important for Nicolas Pouillard's open parametrized modules -- statements inside telescopes. res <- withLocalVars $ do tel <- toAbstract (GenTel tel) withCurrentModule qm $ do -- pushScope m -- qm <- getCurrentModule printScope "module" 40 $ "inside module " ++ prettyShow x ds <- checkDs scope <- getScope return (scope, A.Section r e (qm `withRangesOfQ` x) tel ds) -- Binding is done by the caller printScope "module" 40 $ "after module " ++ prettyShow x return res -- | Temporary data type to scope check a file. data TopLevel a = TopLevel { topLevelSourceFile :: SourceFile -- ^ The file from which we loaded this module. , topLevelExpectedName :: TopLevelModuleName -- ^ The expected module name -- (coming from the import statement that triggered scope checking this file). , topLevelTheThing :: a -- ^ The file content. } data TopLevelInfo = TopLevelInfo { topLevelDecls :: [A.Declaration] , topLevelScope :: ScopeInfo -- ^ as seen from inside the module } -- | The top-level module name. topLevelModuleName :: TopLevelInfo -> A.ModuleName topLevelModuleName = (^. scopeCurrent) . topLevelScope -- | Top-level declarations are always -- @ -- (import|open)* -- a bunch of possibly opened imports -- module ThisModule ... -- the top-level module of this file -- @ instance ToAbstract (TopLevel [C.Declaration]) where type AbsOfCon (TopLevel [C.Declaration]) = TopLevelInfo toAbstract (TopLevel src expectedMName ds) = -- A file is a bunch of preliminary decls (imports etc.) -- plus a single module decl. case C.spanAllowedBeforeModule ds of -- If there are declarations after the top-level module -- we have to report a parse error here. (_, C.Module{} : d : _) -> setCurrentRange d $ typeError DeclarationsAfterTopLevelModule -- Otherwise, proceed. (outsideDecls, [ C.Module r e m0 tel insideDecls ]) -> do -- If the module name is _ compute the name from the file path (m, top) <- if isNoName m0 then do -- Andreas, 2017-07-28, issue #1077 -- Check if the insideDecls end in a single module which has the same -- name as the file. In this case, it is highly likely that the user -- put some non-allowed declarations before the top-level module in error. -- Andreas, 2017-10-19, issue #2808 -- Widen this check to: -- If the first module of the insideDecls has the same name as the file, -- report an error. case flip span insideDecls $ \case { C.Module{} -> False; _ -> True } of (ds0, (C.Module _ _ m1 _ _ : _)) | rawTopLevelModuleNameForQName m1 == rawTopLevelModuleName expectedMName -- If the anonymous module comes from the user, -- the range cannot be the beginningOfFile. -- That is the range if the parser inserted the anon. module. , r == beginningOfFile (getRange insideDecls) -> do -- GA #4888: We know we are in a bad place. But we still scopecheck -- the initial segment on the off chance we generate a better error -- message. void importPrimitives void $ toAbstract (Declarations outsideDecls) void $ toAbstract (Declarations ds0) -- Fail with a crude error otherwise setCurrentRange ds0 $ typeError IllegalDeclarationBeforeTopLevelModule -- Otherwise, reconstruct the top-level module name _ -> do file <- srcFilePath src let m = C.QName $ setRange (getRange m0) $ C.simpleName $ stringToRawName $ rootNameModule file top <- S.topLevelModuleName (rawTopLevelModuleNameForQName m) return (m, top) -- Andreas, 2017-05-17, issue #2574, keep name as jump target! -- Andreas, 2016-07-12, ALTERNATIVE: -- -- We assign an anonymous file module the name expected from -- -- its import. For flat file structures, this is the same. -- -- For hierarchical file structures, this reverses the behavior: -- -- Loading the file by itself will fail, but it can be imported. -- -- The previous behavior is: it can be loaded by itself, but not -- -- be imported -- then return $ C.fromTopLevelModuleName expectedMName else do -- Andreas, 2014-03-28 Issue 1078 -- We need to check the module name against the file name here. -- Otherwise one could sneak in a lie and confuse the scope -- checker. top <- S.topLevelModuleName (rawTopLevelModuleNameForQName m0) checkModuleName top src (Just expectedMName) return (m0, top) setTopLevelModule top am <- toAbstract (NewModuleQName m) primitiveImport <- importPrimitives -- Scope check the declarations outside outsideDecls <- toAbstract (Declarations outsideDecls) (insideScope, insideDecl) <- scopeCheckModule r e m am tel $ toAbstract (Declarations insideDecls) -- Andreas, 2020-05-13, issue #1804, #4647 -- Do not eagerly remove private definitions, only when serializing -- let scope = over scopeModules (fmap $ restrictLocalPrivate am) insideScope let scope = insideScope setScope scope -- While scope-checking the top-level module we might have -- encountered several (possibly nested) opaque blocks. We -- must now ensure that these have transitively-closed -- unfolding sets. saturateOpaqueBlocks return $ TopLevelInfo (primitiveImport ++ outsideDecls ++ [ insideDecl ]) scope -- We already inserted the missing top-level module, see -- 'Agda.Syntax.Parser.Parser.figureOutTopLevelModule', -- thus, this case is impossible: _ -> __IMPOSSIBLE__ -- | Declaration @open import Agda.Primitive using (Set)@ when 'optImportSorts'. -- @Prop@ is added when 'optProp', and @SSet@ when 'optTwoLevel'. importPrimitives :: ScopeM [A.Declaration] importPrimitives = do ifNotM (optImportSorts <$> pragmaOptions) (return []) {- else -} do prop <- optProp <$> pragmaOptions twoLevel <- optTwoLevel <$> pragmaOptions -- Add implicit `open import Agda.Primitive using (Prop; Set; SSet)` let agdaPrimitiveName = Qual (C.simpleName "Agda") $ C.QName $ C.simpleName "Primitive" usingDirective = map (ImportedName . C.simpleName) $ concat [ [ "Prop" | prop ] , [ "Set" | True ] , [ "SSet" | twoLevel ] ] directives = ImportDirective noRange (Using usingDirective) [] [] Nothing importAgdaPrimitive = [C.Import noRange agdaPrimitiveName Nothing C.DoOpen directives] toAbstract (Declarations importAgdaPrimitive) -- | runs Syntax.Concrete.Definitions.niceDeclarations on main module niceDecls :: DoWarn -> [C.Declaration] -> ([NiceDeclaration] -> ScopeM a) -> ScopeM a niceDecls warn ds ret = setCurrentRange ds $ computeFixitiesAndPolarities warn ds $ do -- Some pragmas are not allowed in safe mode unless we are in a builtin module. -- So we need to tell the nicifier whether it should yell about unsafe pragmas. isSafe <- Lens.getSafeMode <$> pragmaOptions safeButNotBuiltin <- and2M -- NB: BlockArguments allow bullet-point style argument lists using @do@, hehe! do pure isSafe do not <$> do isBuiltinModuleWithSafePostulates . fromMaybe __IMPOSSIBLE__ =<< asksTC envCurrentPath -- We need to pass the fixities to the nicifier for clause grouping. fixs <- useScope scopeFixities niceEnv <- NiceEnv safeButNotBuiltin <$> asksTC envCheckingWhere -- Run nicifier. let (result, warns) = runNice niceEnv $ niceDeclarations fixs ds -- Respect the @DoWarn@ directive. For this to be sound, we need to know for -- sure that each @Declaration@ is checked at least once with @DoWarn@. unless (warn == NoWarn || null warns) $ do -- If there are some warnings and the --safe flag is set, -- we check that none of the NiceWarnings are fatal when isSafe $ do let (errs, ws) = List.partition unsafeDeclarationWarning warns -- If some of them are, we fail List1.unlessNull errs \ errs -> do List1.unlessNull ws \ ws -> warnings $ fmap NicifierIssue ws tcerrs <- mapM (warning_ . NicifierIssue) errs setCurrentRange errs $ typeError $ NonFatalErrors $ Set1.fromList tcerrs -- Otherwise we simply record the warnings mapM_ (\ w -> warning' (dwLocation w) $ NicifierIssue w) warns case result of Left (DeclarationException loc e) -> do reportSLn "error" 2 $ "Error raised at " ++ prettyShow loc setCurrentRange e $ typeError $ NicifierError e Right ds -> ret ds -- | Wrapper to avoid instance conflict with generic list instance. newtype Declarations = Declarations [C.Declaration] instance ToAbstract Declarations where type AbsOfCon Declarations = [A.Declaration] toAbstract (Declarations ds) = niceDecls DoWarn ds toAbstract -- | Where did these 'LetDef's come from? data LetDefOrigin = ExprLetDef -- ^ A let expression or do statement | RecordWhereLetDef -- ^ A @record where@ expression | RecordLetDef -- ^ Definitions in a record declaration, before the last field deriving (Eq, Show) data LetDefs = LetDefs LetDefOrigin (List1 C.Declaration) data LetDef = LetDef LetDefOrigin NiceDeclaration instance ToAbstract LetDefs where type AbsOfCon LetDefs = [A.LetBinding] toAbstract :: LetDefs -> ScopeM (AbsOfCon LetDefs) toAbstract (LetDefs wh ds) = List1.concat <$> niceDecls DoWarn (List1.toList ds) (toAbstract . map (LetDef wh)) -- | Raise appropriate (error-)warnings for if a declaration with -- illegal access, macro flag, or abstractness appear in a let -- expression. checkLetDefInfo :: LetDefOrigin -> Access -> IsMacro -> IsAbstract -> ScopeM () checkLetDefInfo wh access macro abstract = do when (abstract == AbstractDef) $ warning AbstractInLetBindings when (macro == MacroDef) $ warning MacroInLetBindings case access of -- Marking a let declaration as private should only raise a warning -- in explicit, user-written expressions. -- -- It should not raise a warning when scope-checking the type of a -- record constructor (it has an effect there), or when elaborating -- the lets generated by a 'record where' expression. PrivateAccess rng _ | wh == ExprLetDef -> scopeWarning (UselessPrivate rng) _ -> pure () instance ToAbstract LetDef where type AbsOfCon LetDef = List1 A.LetBinding toAbstract :: LetDef -> ScopeM (AbsOfCon LetDef) toAbstract (LetDef wh d) = setCurrentRange d case d of NiceMutual _ _ _ _ d@[C.FunSig _ access _ instanc macro info _ _ x t, C.FunDef _ _ abstract _ _ _ _ [cl]] -> do checkLetDefInfo wh access macro abstract t <- toAbstract t -- We bind the name here to make sure it's in scope for the LHS (#917). -- It's unbound for the RHS in letToAbstract. fx <- getConcreteFixity x x <- A.unBind <$> toAbstract (NewName LetBound $ mkBoundName x fx) (x', e) <- letToAbstract cl -- There are sometimes two instances of the let-bound variable, -- one declaration and one definition (see issue #1618). -- Andreas, 2015-08-27 keeping both the range of x and x' solves Issue 1618. -- The situation is -- @ -- let y : t -- y = e -- @ -- and we need to store the ranges of both occurences of y so that -- the highlighter does the right thing. let x2 = setRange (fuseRange x x') x -- If InstanceDef set info to Instance let info' = case instanc of InstanceDef _ -> makeInstance info NotInstanceDef -> info return $ A.LetBind (LetRange $ getRange d) info' (A.mkBindName x2) t e :| [] -- Function signature without a body C.Axiom _ acc abs instanc info x t -> do checkLetDefInfo wh acc NotMacroDef abs t <- toAbstract t fx <- getConcreteFixity x x <- toAbstract (NewName LetBound $ mkBoundName x fx) let info' = case instanc of InstanceDef _ -> makeInstance info NotInstanceDef -> info pure $ A.LetAxiom (LetRange $ getRange d) info' x t :| [] -- irrefutable let binding, like (x , y) = rhs NiceFunClause r PublicAccess ConcreteDef tc cc catchall d@(C.FunClause lhs@(C.LHS p0 [] []) rhs0 whcl ca) -> do noWhereInLetBinding whcl rhs <- letBindingMustHaveRHS rhs0 -- Expand puns if optHiddenArgumentPuns is True. p0 <- expandPunsOpt p0 mp <- setCurrentRange p0 $ (Right <$> parsePattern p0) `catchError` (return . Left) case mp of Right p -> do rhs <- toAbstract rhs setCurrentRange p0 $ do p <- toAbstract p checkValidLetPattern p checkPatternLinearity p $ \ys -> typeError $ RepeatedVariablesInPattern ys bindVarsToBind p <- toAbstract p return $ singleton $ A.LetPatBind (LetRange r) p rhs -- It's not a record pattern, so it should be a prefix left-hand side Left err -> case definedName p0 of Nothing -> throwError err Just x -> toAbstract $ LetDef wh $ NiceMutual empty tc cc YesPositivityCheck [ C.FunSig r PublicAccess ConcreteDef NotInstanceDef NotMacroDef (setOrigin Inserted defaultArgInfo) tc cc x (C.Underscore (getRange x) Nothing) , C.FunDef r __IMPOSSIBLE__ ConcreteDef NotInstanceDef __IMPOSSIBLE__ __IMPOSSIBLE__ __IMPOSSIBLE__ [C.Clause x (ca <> catchall) lhs (C.RHS rhs) NoWhere []] ] where definedName (C.IdentP _ (C.QName x)) = Just x definedName C.IdentP{} = Nothing definedName (C.RawAppP _ (List2 p _ _)) = definedName p definedName (C.ParenP _ p) = definedName p definedName C.WildP{} = Nothing -- for instance let _ + x = x in ... (not allowed) definedName C.AbsurdP{} = Nothing definedName C.AsP{} = Nothing definedName C.DotP{} = Nothing definedName C.EqualP{} = Nothing definedName C.LitP{} = Nothing definedName C.RecP{} = Nothing definedName C.QuoteP{} = Nothing definedName C.HiddenP{} = Nothing -- Not impossible, see issue #2291 definedName C.InstanceP{} = Nothing definedName C.WithP{} = Nothing definedName C.AppP{} = Nothing -- Not impossible, see issue #4586 definedName C.OpAppP{} = __IMPOSSIBLE__ definedName C.EllipsisP{} = Nothing -- Not impossible, see issue #3937 -- You can't open public in a let NiceOpen r x dir -> do dir <- uselessPublic UselessPublicLet dir m <- toAbstract (OldModuleName x) adir <- openModule_ LetOpenModule x dir let minfo = ModuleInfo { minfoRange = r , minfoAsName = Nothing , minfoAsTo = renamingRange dir , minfoOpenShort = Nothing , minfoDirective = Just dir } return $ singleton $ A.LetOpen minfo m adir NiceModuleMacro r p erased x modapp open dir -> do dir <- uselessPublic UselessPublicLet dir -- Andreas, 2014-10-09, Issue 1299: module macros in lets need -- to be private singleton <$> checkModuleMacro LetApply LetOpenModule r privateAccessInserted erased x modapp open dir _ -> notAValidLetBinding Nothing where letToAbstract (C.Clause top _catchall (C.LHS p [] []) rhs0 wh []) = do noWhereInLetBinding wh rhs <- letBindingMustHaveRHS rhs0 (x, args) <- do res <- setCurrentRange p $ parseLHS NoDisplayLHS (C.QName top) p case res of C.LHSHead x args -> return (x, args) C.LHSProj{} -> __IMPOSSIBLE__ -- notAValidLetBinding $ Just CopatternsNotAllowed C.LHSWith{} -> __IMPOSSIBLE__ -- notAValidLetBinding $ Just WithPatternsNotAllowed C.LHSEllipsis{} -> __IMPOSSIBLE__ -- notAValidLetBinding $ Just EllipsisNotAllowed e <- localToAbstract args $ \args -> do bindVarsToBind -- Make sure to unbind the function name in the RHS, since lets are non-recursive. rhs <- unbindVariable top $ toAbstract rhs foldM lambda rhs (reverse args) -- just reverse because these are DomainFree return (x, e) letToAbstract _ = notAValidLetBinding Nothing -- These patterns all have a chance of being accepted in a lambda: allowedPat A.VarP{} = True allowedPat A.ConP{} = True allowedPat A.WildP{} = True allowedPat (A.AsP _ _ x) = allowedPat x allowedPat (A.RecP _ as) = all (allowedPat . view exprFieldA) as allowedPat (A.PatternSynP _ _ as) = all (allowedPat . namedArg) as -- These have no chance: allowedPat A.AbsurdP{} = False allowedPat A.ProjP{} = False allowedPat A.DefP{} = False allowedPat A.EqualP{} = False allowedPat A.WithP{} = False allowedPat A.DotP{} = False allowedPat A.LitP{} = False patternName (A.VarP bn) = Just bn patternName (A.AsP _ bn _) = Just bn patternName _ = Nothing -- Named patterns not allowed in let definitions lambda :: A.Expr -> A.NamedArg (A.Pattern' C.Expr) -> TCM A.Expr lambda e ai@(Arg info (Named thing pat)) | allowedPat pat = do let i = ExprRange (fuseRange pat e) pat <- toAbstract pat bn <- case pat of A.VarP bn -> pure bn A.AsP _ bn _ -> pure bn _ -> fmap mkBindName . freshAbstractName_ =<< freshConcreteName (getRange pat) 0 patternInTeleName -- Annoyingly, for the lambdas to be elaborated properly, we -- have to generate domainful binders. Domain-free binders can -- not be named (or have pattern matching!). -- -- Moreover, we need to avoid generating named patterns that are -- like {B = B @ B}. let pat' = case pat of A.VarP{} -> Nothing pat -> Just pat binder = Arg info (Named thing (A.Binder pat' InsertedBinderName bn)) :| [] pure $ A.Lam i (A.DomainFull (A.TBind (getRange ai) empty binder (A.Underscore empty))) e lambda _ _ = notAValidLetBinding Nothing noWhereInLetBinding :: C.WhereClause -> ScopeM () noWhereInLetBinding = \case NoWhere -> return () wh -> setCurrentRange wh $ notAValidLetBinding $ Just WhereClausesNotAllowed letBindingMustHaveRHS :: C.RHS -> ScopeM C.Expr letBindingMustHaveRHS = \case C.RHS e -> return e C.AbsurdRHS -> notAValidLetBinding $ Just MissingRHS -- Only record patterns allowed, but we do not exclude data constructors here. -- They will fail in the type checker. checkValidLetPattern :: A.Pattern' e -> ScopeM () checkValidLetPattern a = unless (allowedPat a) do notAValidLetBinding $ Just NotAValidLetPattern checkFieldArgInfo :: Bool -> ArgInfo -> ScopeM ArgInfo checkFieldArgInfo warn = ensureContinuous msg >=> ensureMixedPolarity msg where msg = if warn then Just "of field" else Nothing instance ToAbstract NiceDeclaration where type AbsOfCon NiceDeclaration = A.Declaration toAbstract d = annotateDecls $ traceS "scope.decl.trace" 50 [ "scope checking declaration" , " " ++ prettyShow d ] $ traceS "scope.decl.trace" 80 -- keep this debug message for testing issue #4016 [ "scope checking declaration (raw)" , " " ++ show d ] $ traceCall (ScopeCheckDeclaration d) $ -- Andreas, 2015-10-05, Issue 1677: -- We record in the environment whether we are scope checking an -- abstract definition. This way, we can propagate this attribute -- the extended lambdas. applyWhenJust (niceHasAbstract d) (\ a -> localTC $ \ e -> e { envAbstractMode = aDefToMode a }) $ case d of -- Axiom (actual postulate) C.Axiom r p a i rel x t -> do (y, decl) <- toAbstractNiceAxiom AxiomName d -- check that we do not postulate in --safe mode, unless it is a -- builtin module with safe postulates, or the axiom is generated -- from a lone signature whenM (andM [ Lens.getSafeMode <$> commandLineOptions , not <$> (isBuiltinModuleWithSafePostulates . fromMaybe __IMPOSSIBLE__ =<< asksTC envCurrentPath) , pure $ getOrigin rel /= Inserted ]) (warning $ SafeFlagPostulate y) -- check the postulate return $ singleton decl C.NiceGeneralize r p i tac x t -> do reportSLn "scope.decl" 30 $ "found nice generalize: " ++ prettyShow x tac <- traverse (toAbstractCtx TopCtx) tac t_ <- toAbstractCtx TopCtx t let (s, t) = unGeneralized t_ reportSLn "scope.decl" 50 $ "generalizations: " ++ show (Set.toList s, t) f <- getConcreteFixity x y <- freshAbstractQName f x bindName p GeneralizeName x y let info = (mkDefInfo x f p ConcreteDef r) { defTactic = tac } return [A.Generalize s info i y t] -- Fields C.NiceField r p a i tac x (Arg ai t) -> do unless (p == PublicAccess) $ typeError PrivateRecordField ai <- checkFieldArgInfo False ai -- we already warned in recordConstructorType tac <- traverse (toAbstractCtx TopCtx) tac -- Interaction points for record fields have already been introduced -- when checking the type of the record constructor. -- To avoid introducing interaction points (IP) twice, we turn -- all question marks to underscores. (See issue 1138.) let maskIP (C.QuestionMark r _) = C.Underscore r Nothing maskIP e = e t <- toAbstractCtx TopCtx $ mapExpr maskIP t f <- getConcreteFixity x y <- freshAbstractQName f x -- Andreas, 2018-06-09 issue #2170 -- We want dependent irrelevance without irrelevant projections, -- thus, do not disable irrelevant projections via the scope checker. -- irrProj <- optIrrelevantProjections <$> pragmaOptions -- unless (isIrrelevant t && not irrProj) $ -- -- Andreas, 2010-09-24: irrelevant fields are not in scope -- -- this ensures that projections out of irrelevant fields cannot occur -- -- Ulf: unless you turn on --irrelevant-projections bindName p FldName x y let info = (mkDefInfoInstance x f p a i NotMacroDef r) { defTactic = tac } return [ A.Field info y (Arg ai t) ] -- Primitive function PrimitiveFunction r p a x t -> notAffectedByOpaque $ do t' <- traverse (toAbstractCtx TopCtx) t f <- getConcreteFixity x y <- freshAbstractQName f x bindName p PrimName x y unfoldFunction y let di = mkDefInfo x f p a r return [ A.Primitive di y t' ] -- Definitions (possibly mutual) NiceMutual kwr tc cc pc ds -> do reportSLn "scope.mutual" 40 ("starting checking mutual definitions: " ++ prettyShow ds) ds' <- toAbstract ds reportSLn "scope.mutual" 40 ("finishing checking mutual definitions") -- We only termination check blocks that do not have a measure. return [ A.Mutual (MutualInfo tc cc pc (fuseRange kwr ds)) ds' ] C.NiceRecSig r er p a _pc _uc x ls t -> do ensureNoLetStms ls withLocalVars $ do (ls', _) <- withCheckNoShadowing $ -- Minor hack: record types don't have indices so we include t when -- computing generalised parameters, but in the type checker any named -- generalizable arguments in the sort should be bound variables. toAbstract (GenTelAndType (map makeDomainFull ls) t) t' <- toAbstract t f <- getConcreteFixity x x' <- freshAbstractQName f x bindName' p RecName (GeneralizedVarsMetadata $ generalizeTelVars ls') x x' return [ A.RecSig (mkDefInfo x f p a r) er x' ls' t' ] C.NiceDataSig r er p a pc uc x ls t -> do reportSLn "scope.data.sig" 40 ("checking DataSig for " ++ prettyShow x) ensureNoLetStms ls withLocalVars $ do ls' <- withCheckNoShadowing $ toAbstract $ GenTel $ map makeDomainFull ls t' <- toAbstract $ C.Generalized t f <- getConcreteFixity x x' <- freshAbstractQName f x mErr <- bindName'' p DataName (GeneralizedVarsMetadata $ generalizeTelVars ls') x x' whenJust mErr $ \case err@(ClashingDefinition cn an _) -> do resolveName (C.QName x) >>= \case -- #4435: if a data type signature causes a ClashingDefinition error, and if -- the data type name is bound to an Axiom, then the error may be caused by -- the illegal type signature. Convert the NiceDataSig into a NiceDataDef -- (which removes the type signature) and suggest it as a possible fix. DefinedName p ax NoSuffix | anameKind ax == AxiomName -> do let suggestion = NiceDataDef r Inserted a pc uc x ls [] typeError $ ClashingDefinition cn an (Just suggestion) _ -> typeError err otherErr -> typeError otherErr return [ A.DataSig (mkDefInfo x f p a r) er x' ls' t' ] -- Type signatures C.FunSig r p a i m rel _ _ x t -> do let kind = if m == MacroDef then MacroName else FunName singleton . snd <$> toAbstractNiceAxiom kind (C.Axiom r p a i rel x t) -- Function definitions C.FunDef r ds a i _ _ x cs -> do printLocals 30 $ "checking def " ++ prettyShow x (x',cs) <- toAbstract (OldName x,cs) -- Andreas, 2017-12-04 the name must reside in the current module unlessM ((A.qnameModule x' ==) <$> getCurrentModule) $ __IMPOSSIBLE__ f <- getConcreteFixity x unfoldFunction x' di <- updateDefInfoOpacity (mkDefInfoInstance x f PublicAccess a i NotMacroDef r) return [ A.FunDef di x' cs ] -- Uncategorized function clauses C.NiceFunClause _ _ _ _ _ _ (C.FunClause lhs _ _ _) -> typeError $ MissingTypeSignature $ MissingFunctionSignature lhs C.NiceFunClause{} -> __IMPOSSIBLE__ -- Data definitions C.NiceDataDef r o a _ uc x pars cons -> notAffectedByOpaque $ do reportSLn "scope.data.def" 40 ("checking " ++ show o ++ " DataDef for " ++ prettyShow x) (p, ax) <- resolveName (C.QName x) >>= \case DefinedName p ax NoSuffix -> do clashUnless x DataName ax -- Andreas 2019-07-07, issue #3892 livesInCurrentModule ax -- Andreas, 2017-12-04, issue #2862 clashIfModuleAlreadyDefinedInCurrentModule x ax return (p, ax) _ -> typeError $ MissingTypeSignature $ MissingDataSignature x ensureNoLetStms pars withLocalVars $ do gvars <- bindGeneralizablesIfInserted o ax -- Check for duplicate constructors do cs <- mapM conName cons List1.unlessNull (duplicates cs) $ \ dups -> do let bad = filter (`elem` dups) cs setCurrentRange bad $ typeError $ DuplicateConstructors dups pars <- catMaybes <$> toAbstract pars let x' = anameName ax -- Create the module for the qualified constructors checkForModuleClash x -- disallow shadowing previously defined modules let m = qnameToMName x' createModule (Just IsDataModule) m bindModule p x m -- make it a proper module cons <- toAbstract (map (DataConstrDecl m a p) cons) printScope "data" 40 $ "Checked data " ++ prettyShow x f <- getConcreteFixity x return [ A.DataDef (mkDefInfo x f PublicAccess a r) x' uc (DataDefParams gvars pars) cons ] where conName (C.Axiom _ _ _ _ _ c _) = return c conName d = errorNotConstrDecl d -- Record definitions (mucho interesting) C.NiceRecDef r o a _ uc x directives pars fields -> notAffectedByOpaque $ do reportSLn "scope.rec.def" 40 ("checking " ++ show o ++ " RecDef for " ++ prettyShow x) -- #3008: Termination pragmas are ignored in records checkNoTerminationPragma InRecordDef fields RecordDirectives ind eta pat cm <- gatherRecordDirectives directives -- Andreas, 2020-04-19, issue #4560 -- 'pattern' declaration is incompatible with 'coinductive' or 'eta-equality'. pat <- case pat of Just r | Just (Ranged _ CoInductive) <- ind -> Nothing <$ warn "coinductive" | Just (Ranged _ YesEta) <- eta -> Nothing <$ warn "eta" | otherwise -> return pat where warn = setCurrentRange r . warning . UselessPatternDeclarationForRecord Nothing -> return pat (p, ax) <- resolveName (C.QName x) >>= \case DefinedName p ax NoSuffix -> do clashUnless x RecName ax -- Andreas 2019-07-07, issue #3892 livesInCurrentModule ax -- Andreas, 2017-12-04, issue #2862 clashIfModuleAlreadyDefinedInCurrentModule x ax return (p, ax) _ -> typeError $ MissingTypeSignature $ MissingRecordSignature x ensureNoLetStms pars withLocalVars $ do gvars <- bindGeneralizablesIfInserted o ax -- Check that the generated module doesn't clash with a previously -- defined module checkForModuleClash x pars <- catMaybes <$> toAbstract pars let x' = anameName ax -- We scope check the fields a first time when putting together -- the type of the constructor. contel <- localToAbstract (RecordConstructorType fields) return m0 <- getCurrentModule let m = A.qualifyM m0 $ mnameFromList1 $ singleton $ List1.last $ qnameToList x' printScope "rec" 25 "before record" createModule (Just IsRecordModule) m -- We scope check the fields a second time, as actual fields. afields <- withCurrentModule m $ do afields <- toAbstract (Declarations fields) printScope "rec" 25 "checked fields" return afields -- Andreas, 2017-07-13 issue #2642 disallow duplicate fields -- Check for duplicate fields. (See "Check for duplicate constructors") do let fs :: [C.Name] fs = concat $ forMaybe fields $ \case C.Field _ fs -> Just $ fs <&> \case -- a Field block only contains field signatures C.FieldSig _ _ f _ -> f _ -> __IMPOSSIBLE__ _ -> Nothing List1.unlessNull (duplicates fs) $ \ dups -> do let bad = filter (`elem` dups) fs setCurrentRange bad $ typeError $ DuplicateFields dups bindModule p x m let kind = maybe ConName (conKindOfName . rangedThing) ind cm' <- case cm of -- Andreas, 2019-11-11, issue #4189, no longer add record constructor to record module. Just (c, _) -> NamedRecCon <$> bindRecordConstructorName c kind a p -- Amy, 2024-09-25: if the record does not have a named -- constructor, then generate the QName here, and record it in -- the TC state so that 'Record.constructor' can be resolved. Nothing -> do -- Technically it doesn't matter with what this name is -- qualified since record constructor names have a special -- printing rule in lookupQName. constr <- withCurrentModule m $ freshAbstractQName noFixity' $ simpleName "constructor" pure $ FreshRecCon constr setRecordConstructor x' (recordConName cm', fmap rangedThing ind) let inst = caseMaybe cm NotInstanceDef snd printScope "rec" 25 "record complete" f <- getConcreteFixity x let params = DataDefParams gvars pars let dir' = RecordDirectives ind eta pat cm' return [ A.RecDef (mkDefInfoInstance x f PublicAccess a inst NotMacroDef r) x' uc dir' params contel afields ] NiceModule r p a e x@(C.QName name) tel ds -> notAffectedByOpaque $ do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking NiceModule " ++ prettyShow x ] adecl <- traceCall (ScopeCheckDeclaration $ NiceModule r p a e x tel []) $ do scopeCheckNiceModule r p e name tel $ toAbstract (Declarations ds) reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked NiceModule " ++ prettyShow x , nest 2 $ prettyA adecl ] return [ adecl ] NiceModule _ _ _ _ m@C.Qual{} _ _ -> typeError QualifiedLocalModule NiceModuleMacro r p e x modapp open dir -> do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking NiceModuleMacro " ++ prettyShow x ] adecl <- checkModuleMacro Apply TopOpenModule r p e x modapp open dir reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked NiceModuleMacro " ++ prettyShow x , nest 2 $ prettyA adecl ] return [ adecl ] NiceOpen r x dir -> do (minfo, m, adir) <- checkOpen r Nothing x dir return [A.Open minfo m adir] NicePragma r p -> do ps <- toAbstract p -- could result in empty list of pragmas return $ map (A.Pragma r) ps NiceImport r x as open dir -> setCurrentRange r $ do dir <- notPublicWithoutOpen open dir -- Andreas, 2018-11-03, issue #3364, parse expression in as-clause as Name. let illformedAs s = setCurrentRange as $ do -- If @as@ is followed by something that is not a simple name, -- throw a warning and discard the as-clause. Nothing <$ warning (IllformedAsClause s) as <- case as of -- Ok if no as-clause or it (already) contains a Name. Nothing -> return Nothing Just (AsName (Right asName) r) -> return $ Just $ AsName asName r Just (AsName (Left (C.Ident (C.QName asName))) r) -> return $ Just $ AsName asName r Just (AsName (Left C.Underscore{}) r) -> return $ Just $ AsName underscore r Just (AsName (Left (C.Ident C.Qual{})) r) -> illformedAs "; a qualified name is not allowed here" Just (AsName (Left e) r) -> illformedAs "" top <- S.topLevelModuleName (rawTopLevelModuleNameForQName x) -- First scope check the imported module and return its name and -- interface. This is done with that module as the top-level module. -- This is quite subtle. We rely on the fact that when setting the -- top-level module and generating a fresh module name, the generated -- name will be exactly the same as the name generated when checking -- the imported module. (m, i) <- withCurrentModule noModuleName $ withTopLevelModule top $ do printScope "import" 30 "before import:" (m0, i) <- scopeCheckImport top printScope "import" 30 $ "scope checked import: " ++ prettyShow i -- We don't want the top scope of the imported module (things happening -- before the module declaration) return (m0 `withRangesOfQ` x, Map.delete noModuleName i) -- Bind the desired module name to the right abstract name. (name, theAsSymbol, theAsName) <- case as of Just a | let y = asName a, not (isNoName y) -> do bindModule privateAccessInserted y m return (C.QName y, asRange a, Just y) _ -> do -- Don't bind if @import ... as _@ with "no name" whenNothing as $ bindQModule (privateAccessInserted) x m return (x, noRange, Nothing) -- Open if specified, otherwise apply import directives adir <- case open of -- With @open@ import directives apply to the opening. -- The module is thus present in its qualified form without restrictions. DoOpen -> do -- Merge the imported scopes with the current scopes. -- This might override a previous import of @m@, but monotonously (add stuff). modifyScopes $ \ ms -> Map.unionWith mergeScope (Map.delete m ms) i -- Andreas, 2019-05-29, issue #3818. -- Pass the resolved name to open instead triggering another resolution. -- This helps in situations like -- @ -- module Top where -- module M where -- open import M -- @ -- It is clear than in @open import M@, name @M@ must refer to a file -- rather than the above defined local module @M@. -- This already worked in the situation -- @ -- module Top where -- module M where -- import M -- @ -- Note that the manual desugaring of @open import@ as -- @ -- module Top where -- module M where -- import M -- open M -- @ -- will not work, as @M@ is now ambiguous in @open M@; -- the information that @M@ is external is lost here. (_minfo, _m, adir) <- checkOpen r (Just m) name dir return adir -- If not opening, import directives are applied to the original scope. DontOpen -> do (adir, i') <- Map.adjustM' (applyImportDirectiveM x dir) m i -- Andreas, 2020-05-18, issue #3933 -- We merge the new imports without deleting old imports, to be monotone. modifyScopes $ \ ms -> Map.unionWith mergeScope ms i' return adir printScope "import" 30 "merged imported sig:" let minfo = ModuleInfo { minfoRange = r , minfoAsName = theAsName , minfoAsTo = getRange (theAsSymbol, renamingRange dir) , minfoOpenShort = Just open , minfoDirective = Just dir } return [ A.Import minfo m adir ] NiceUnquoteDecl r p a i tc cc xs e -> do fxs <- mapM getConcreteFixity xs ys <- zipWithM freshAbstractQName fxs xs zipWithM_ (bindName p QuotableName) xs ys e <- toAbstract e zipWithM_ (rebindName p OtherDefName) xs ys let mi = MutualInfo tc cc YesPositivityCheck r mapM_ unfoldFunction ys opaque <- contextIsOpaque return [ A.Mutual mi [ A.UnquoteDecl mi [ (mkDefInfoInstance x fx p a i NotMacroDef r) { Info.defOpaque = opaque } | (fx, x) <- zip fxs xs ] ys e ] ] NiceUnquoteDef r p a _ _ xs e -> do fxs <- mapM getConcreteFixity xs ys <- mapM (toAbstract . OldName) xs zipWithM_ (rebindName p QuotableName) xs ys e <- toAbstract e zipWithM_ (rebindName p OtherDefName) xs ys mapM_ unfoldFunction ys opaque <- contextIsOpaque return [ A.UnquoteDef [ (mkDefInfo x fx PublicAccess a r) { Info.defOpaque = opaque } | (fx, x) <- zip fxs xs ] ys e ] NiceUnquoteData r p a pc uc x cs e -> notAffectedByOpaque $ do fx <- getConcreteFixity x x' <- freshAbstractQName fx x bindName p QuotableName x x' -- Create the module for the qualified constructors checkForModuleClash x let m = qnameToMName x' createModule (Just IsDataModule) m bindModule p x m -- make it a proper module cs' <- mapM (bindUnquoteConstructorName m p) cs e <- withCurrentModule m $ toAbstract e rebindName p DataName x x' zipWithM_ (rebindName p ConName) cs cs' withCurrentModule m $ zipWithM_ (rebindName p ConName) cs cs' fcs <- mapM getConcreteFixity cs let mi = MutualInfo TerminationCheck YesCoverageCheck pc r return [ A.Mutual mi [A.UnquoteData [ mkDefInfo x fx p a r ] x' uc [ mkDefInfo c fc p a r | (fc, c) <- zip fcs cs] cs' e ] ] NicePatternSyn r a n as p -> do reportSLn "scope.pat" 30 $ "found nice pattern syn: " ++ prettyShow n (as, p) <- withLocalVars $ do -- Expand puns if optHiddenArgumentPuns is True. p <- parsePatternSyn =<< expandPunsOpt p p <- toAbstract p when (containsAsPattern p) $ typeError AsPatternInPatternSynonym checkPatternLinearity p $ \ys -> typeError $ RepeatedVariablesInPattern ys -- Bind the pattern variables accumulated by @ToAbstract Pattern@ applied to the rhs. bindVarsToBind p <- A.noDotOrEqPattern (typeError DotPatternInPatternSynonym) p as <- mapM checkPatSynParam as List1.unlessNull (patternVars p List.\\ map whThing as) $ \ xs -> do typeError $ UnboundVariablesInPatternSynonym xs return (as, p) y <- freshAbstractQName' n bindName a PatternSynName n y -- Expanding pattern synonyms already at definition makes it easier to -- fold them back when printing (issue #2762). ep <- expandPatternSynonyms p modifyPatternSyns (Map.insert y (as, ep)) return [A.PatternSynDef y (map (fmap BindName) as) p] -- only for highlighting, so use unexpanded version where checkPatSynParam :: WithHiding C.Name -> ScopeM (WithHiding A.Name) checkPatSynParam (WithHiding h x) = do let err = setCurrentRange x . typeError resolveName (C.QName x) >>= \case VarName a (PatternBound h') | isInstance h, not (isInstance h') -> err $ IllegalInstanceVariableInPatternSynonym x | otherwise -> return $ WithHiding h a ConstructorName _ ys -> err $ PatternSynonymArgumentShadows IsConstructor x ys PatternSynResName ys -> err $ PatternSynonymArgumentShadows IsPatternSynonym x ys UnknownName -> err $ UnusedVariableInPatternSynonym x -- Other cases are impossible because parsing the pattern syn rhs would have failed. _ -> __IMPOSSIBLE__ d@NiceLoneConstructor{} -> withCurrentCallStack $ \ stk -> do warning $ NicifierIssue (DeclarationWarning stk (InvalidConstructorBlock (getRange d))) pure [] d@(NiceOpaque kwr xs decls) -> do -- The names in an 'unfolding' clause must be unambiguous names of definitions: -- Resolve all the names, and use them as an initial unfolding set: names <- catMaybes <$> forM xs \ x -> do setCurrentRange x $ unambiguousConOrDef (const . UnfoldingWrongName) x -- Generate the identifier for this block: oid <- fresh -- Record the parent unfolding block, if any: parent <- asksTC envCurrentOpaqueId let r = getRange d stOpaqueBlocks `modifyTCLens` Map.insert oid OpaqueBlock { opaqueId = oid , opaqueUnfolding = HashSet.fromList names , opaqueDecls = mempty , opaqueParent = parent , opaqueRange = r } -- Keep going! localTC (\e -> e { envCurrentOpaqueId = Just oid }) $ do out <- traverse toAbstract decls unless (any interestingOpaqueDecl out) $ setCurrentRange kwr $ warning UselessOpaque pure $ UnfoldingDecl r names : out -- | Checking postulate or type sig. without checking safe flag. toAbstractNiceAxiom :: KindOfName -> C.NiceDeclaration -> ScopeM (A.QName, A.Declaration) toAbstractNiceAxiom kind (C.Axiom r p a i info x t) = do -- Amy, 2025-05-04, issue 7856: type signatures (more -- importantly extended lambdas within them) should not belong -- to opaque blocks -- -- Note that only scope checking the type happens outside the -- block since a bit below we need the proper opaque id to -- possibly update the info. t' <- notUnderOpaque $ toAbstractCtx TopCtx t f <- getConcreteFixity x mp <- getConcretePolarity x y <- freshAbstractQName f x let isMacro | kind == MacroName = MacroDef | otherwise = NotMacroDef bindName p kind x y definfo <- updateDefInfoOpacity $ mkDefInfoInstance x f p a i isMacro r return (y, A.Axiom kind definfo info mp y t') toAbstractNiceAxiom _ _ = __IMPOSSIBLE__ interestingOpaqueDecl :: A.Declaration -> Bool interestingOpaqueDecl (A.Mutual _ ds) = any interestingOpaqueDecl ds interestingOpaqueDecl (A.ScopedDecl _ ds) = any interestingOpaqueDecl ds interestingOpaqueDecl A.FunDef{} = True interestingOpaqueDecl A.UnquoteDecl{} = True interestingOpaqueDecl A.UnquoteDef{} = True interestingOpaqueDecl _ = False -- ** Helper functions for @opaque@ ------------------------------------------------------------------------ -- | Add a 'QName' to the set of declarations /contained in/ the current -- opaque block. unfoldFunction :: A.QName -> ScopeM () unfoldFunction qn = asksTC envCurrentOpaqueId >>= \case Just id -> do let go Nothing = __IMPOSSIBLE__ go (Just ob) = Just ob{ opaqueDecls = qn `HashSet.insert` opaqueDecls ob } stOpaqueBlocks `modifyTCLens` Map.alter go id Nothing -> pure () -- | Look up the current opaque identifier as a value in 'IsOpaque'. contextIsOpaque :: ScopeM IsOpaque contextIsOpaque = maybe TransparentDef OpaqueDef <$> asksTC envCurrentOpaqueId updateDefInfoOpacity :: DefInfo -> ScopeM DefInfo updateDefInfoOpacity di = (\a -> di { Info.defOpaque = a }) <$> contextIsOpaque -- | Raise a warning indicating that the current Declaration is not -- affected by opacity, but only if we are actually in an Opaque block. notAffectedByOpaque :: ScopeM a -> ScopeM a notAffectedByOpaque k = do whenM ((NoWhere_ ==) <$> asksTC envCheckingWhere) $ whenJustM (asksTC envCurrentOpaqueId) \ _ -> warning NotAffectedByOpaque notUnderOpaque k -- * Helper functions for @variable@ generalization ------------------------------------------------------------------------ unGeneralized :: A.Expr -> (Set A.QName, A.Expr) unGeneralized (A.Generalized s t) = (Set1.toSet s, t) unGeneralized (A.ScopedExpr si e) = A.ScopedExpr si <$> unGeneralized e unGeneralized t = (mempty, t) alreadyGeneralizing :: ScopeM Bool alreadyGeneralizing = isJust <$> useTC stGeneralizedVars -- | In the context of scope checking an expression, given a resolved name @d@: -- -- * If @d@ is a @variable@ (generalizable), add it to the collection 'stGeneralizedVars' -- of variables we wish to abstract over. -- -- * Otherwise, do nothing. -- class AddGeneralizable a where addGeneralizable :: a -> ScopeM () instance AddGeneralizable AbstractName where addGeneralizable :: AbstractName -> ScopeM () addGeneralizable d = case anameKind d of GeneralizeName -> do gvs <- useTC stGeneralizedVars case gvs of -- Subtle: Use (left-biased) union instead of insert to keep the old name if -- already present. This way we can sort by source location when generalizing -- (Issue 3354). Just s -> stGeneralizedVars `setTCLens` Just (s `Set.union` Set.singleton (anameName d)) Nothing -> typeError $ GeneralizeNotSupportedHere $ anameName d DisallowedGeneralizeName -> typeError $ GeneralizedVarInLetOpenedModule $ anameName d _ -> return () instance AddGeneralizable ResolvedName where addGeneralizable = \case -- Only 'DefinedName' can be a @variable@. DefinedName _ d NoSuffix -> addGeneralizable d DefinedName _ d Suffix{} -> return () VarName{} -> return () FieldName{} -> return () ConstructorName{} -> return () PatternSynResName{} -> return () UnknownName{} -> return () collectGeneralizables :: ScopeM a -> ScopeM (Set A.QName, a) collectGeneralizables m = -- #5683: No nested generalization ifM alreadyGeneralizing ((Set.empty,) <$> m) $ {-else-} bracket_ open close $ do a <- m s <- useTC stGeneralizedVars case s of Nothing -> __IMPOSSIBLE__ Just s -> return (s, a) where open = do gvs <- useTC stGeneralizedVars stGeneralizedVars `setTCLens` Just mempty pure gvs close = (stGeneralizedVars `setTCLens`) createBoundNamesForGeneralizables :: Set A.QName -> ScopeM (Map A.QName A.Name) createBoundNamesForGeneralizables vs = flip Map.traverseWithKey (Map.fromSet (const ()) vs) $ \ q _ -> do let x = nameConcrete $ qnameName q fx = nameFixity $ qnameName q freshAbstractName fx x collectAndBindGeneralizables :: ScopeM a -> ScopeM (Map A.QName A.Name, a) collectAndBindGeneralizables m = do fvBefore <- length <$> getLocalVars (s, res) <- collectGeneralizables m fvAfter <- length <$> getLocalVars -- We should bind the named generalizable variables as fresh variables binds <- createBoundNamesForGeneralizables s -- Issue #3735: We need to bind the generalizable variables outside any variables bound by `m`. outsideLocalVars (fvAfter - fvBefore) $ bindGeneralizables binds return (binds, res) bindGeneralizables :: Map A.QName A.Name -> ScopeM () bindGeneralizables vars = forM_ (Map.toList vars) $ \ (q, y) -> bindVariable LambdaBound (nameConcrete $ qnameName q) y -- | Bind generalizable variables if data or record decl was split by the system -- (origin == Inserted) bindGeneralizablesIfInserted :: Origin -> AbstractName -> ScopeM (Set A.Name) bindGeneralizablesIfInserted Inserted y = bound <$ bindGeneralizables gvars where gvars = case anameMetadata y of GeneralizedVarsMetadata gvars -> gvars NoMetadata -> Map.empty bound = Set.fromList (Map.elems gvars) bindGeneralizablesIfInserted UserWritten _ = return Set.empty bindGeneralizablesIfInserted _ _ = __IMPOSSIBLE__ newtype GenTel = GenTel C.Telescope data GenTelAndType = GenTelAndType C.Telescope C.Expr instance ToAbstract GenTel where type AbsOfCon GenTel = A.GeneralizeTelescope toAbstract (GenTel tel) = uncurry A.GeneralizeTel <$> collectAndBindGeneralizables (catMaybes <$> toAbstract tel) instance ToAbstract GenTelAndType where type AbsOfCon GenTelAndType = (A.GeneralizeTelescope, A.Expr) toAbstract (GenTelAndType tel t) = do (binds, (tel, t)) <- collectAndBindGeneralizables $ (,) <$> toAbstract tel <*> toAbstract t return (A.GeneralizeTel binds (catMaybes tel), t) -- ** Record directives ------------------------------------------------------------------------ -- | Check for duplicate record directives. gatherRecordDirectives :: [C.RecordDirective] -> ScopeM C.RecordDirectives gatherRecordDirectives ds = mapM_ gatherRecordDirective ds `execStateT` empty -- | Fill the respective field of 'C.RecordDirectives' by the given 'C.RecordDirective'. -- -- Ignore it with a dead-code warning if the field is already filled. -- gatherRecordDirective :: C.RecordDirective -> StateT C.RecordDirectives ScopeM () gatherRecordDirective d = do dir@RecordDirectives{ recInductive = ind, recHasEta = eta, recPattern = pat, recConstructor = con } <- get case d of Induction ri -> assertNothing ind $ put dir{ recInductive = Just ri } Eta re -> assertNothing eta $ put dir{ recHasEta = Just re } PatternOrCopattern r -> assertNothing pat $ put dir{ recPattern = Just r } C.Constructor x inst -> assertNothing con $ put dir{ recConstructor = Just (x, inst) } where assertNothing :: Maybe a -> StateT C.RecordDirectives ScopeM () -> StateT C.RecordDirectives ScopeM () assertNothing Nothing cont = cont assertNothing Just{} _ = lift $ setCurrentRange d $ warning $ DuplicateRecordDirective d -- ** Helper functions for name clashes ------------------------------------------------------------------------ -- | Make sure definition is in same module as signature. class LivesInCurrentModule a where livesInCurrentModule :: a -> ScopeM () instance LivesInCurrentModule AbstractName where livesInCurrentModule = livesInCurrentModule . anameName instance LivesInCurrentModule A.QName where livesInCurrentModule x = do m <- getCurrentModule reportS "scope.data.def" 30 [ " A.QName of data type: " ++ prettyShow x , " current module: " ++ prettyShow m ] unless (A.qnameModule x == m) $ typeError $ DefinitionInDifferentModule x -- | Unless the resolved 'AbstractName' has the given 'KindOfName', -- report a 'ClashingDefinition' for the 'C.Name'. clashUnless :: C.Name -> KindOfName -> AbstractName -> ScopeM () clashUnless x k ax = unless (anameKind ax == k) $ typeError $ ClashingDefinition (C.QName x) (anameName ax) Nothing -- | If a (data/record) module with the given name is already present in the current module, -- we take this as evidence that a data/record with that name is already defined. clashIfModuleAlreadyDefinedInCurrentModule :: C.Name -> AbstractName -> ScopeM () clashIfModuleAlreadyDefinedInCurrentModule x ax = do datRecMods <- catMaybes <$> do mapM (isDatatypeModule . amodName) =<< lookupModuleInCurrentModule x unlessNull datRecMods $ const $ typeError $ ClashingDefinition (C.QName x) (anameName ax) Nothing lookupModuleInCurrentModule :: C.Name -> ScopeM [AbstractModule] lookupModuleInCurrentModule x = List1.toList' . Map.lookup x . nsModules . thingsInScope [PublicNS, PrivateNS] <$> getCurrentScope -- ** Helper functions for constructor declarations ------------------------------------------------------------------------ data DataConstrDecl = DataConstrDecl A.ModuleName IsAbstract Access C.NiceDeclaration -- | Bind a @data@ constructor. bindConstructorName :: ModuleName -- ^ Name of @data@/@record@ module. -> C.Name -- ^ Constructor name. -> IsAbstract -> Access -> ScopeM A.QName bindConstructorName m x a p = do f <- getConcreteFixity x -- The abstract name is the qualified one y <- withCurrentModule m $ freshAbstractQName f x -- Bind it twice, once unqualified and once qualified bindName p' ConName x y withCurrentModule m $ bindName p'' ConName x y return y where -- An abstract constructor is private (abstract constructor means -- abstract datatype, so the constructor should not be exported). p' = case a of AbstractDef -> privateAccessInserted _ -> p p'' = case a of AbstractDef -> privateAccessInserted _ -> PublicAccess -- | Record constructors do not live in the record module (as it is parameterized). -- Abstract constructors are bound privately, so that they are not exported. bindRecordConstructorName :: C.Name -> KindOfName -> IsAbstract -> Access -> ScopeM A.QName bindRecordConstructorName x kind a p = do y <- freshAbstractQName' x bindName p' kind x y return y where -- An abstract constructor is private (abstract constructor means -- abstract datatype, so the constructor should not be exported). p' = case a of AbstractDef -> privateAccessInserted _ -> p bindUnquoteConstructorName :: ModuleName -> Access -> C.Name -> TCM A.QName bindUnquoteConstructorName m p c = do r <- resolveName (C.QName c) fc <- getConcreteFixity c c' <- withCurrentModule m $ freshAbstractQName fc c let aname qn = AbsName qn QuotableName Defined NoMetadata addName = modifyCurrentScope $ addNameToScope (localNameSpace p) c $ aname c' success = addName >> (withCurrentModule m $ addName) failure y = typeError $ ClashingDefinition (C.QName c) y Nothing case r of _ | isNoName c -> success UnknownName -> success ConstructorName i ds -> if all (isJust . isConName . anameKind) ds then success else failure $ anameName $ List1.head ds DefinedName _ d _ -> failure $ anameName d FieldName ds -> failure $ anameName $ List1.head ds PatternSynResName ds -> failure $ anameName $ List1.head ds VarName y _ -> failure $ qualify_ y return c' instance ToAbstract DataConstrDecl where type AbsOfCon DataConstrDecl = A.Declaration toAbstract (DataConstrDecl m a p d) = traceCall (ScopeCheckDeclaration d) do case d of C.Axiom r p1 a1 i ai x t -> do -- unless (p1 == p) __IMPOSSIBLE__ -- This invariant is currently violated by test/Succeed/Issue282.agda unless (a1 == a) __IMPOSSIBLE__ ai <- checkConstructorArgInfo ai t' <- toAbstractCtx TopCtx t -- The abstract name is the qualified one -- Bind it twice, once unqualified and once qualified f <- getConcreteFixity x y <- bindConstructorName m x a p printScope "con" 25 "bound constructor" let defInfo = mkDefInfoInstance x f p a i NotMacroDef r return $ A.Axiom ConName defInfo ai Nothing y t' _ -> errorNotConstrDecl d -- | Delete (with warning) attributes that are illegal for constructor declarations. checkConstructorArgInfo :: ArgInfo -> ScopeM ArgInfo checkConstructorArgInfo = ensureRelevant msg >=> ensureNotLinear msg >=> ensureContinuous msg >=> ensureMixedPolarity msg where msg = Just "of constructor" errorNotConstrDecl :: C.NiceDeclaration -> ScopeM a errorNotConstrDecl d = setCurrentRange d $ typeError $ IllegalDeclarationInDataDefinition $ notSoNiceDeclarations d ensureRelevant :: LensRelevance a => Maybe String -> a -> ScopeM a ensureRelevant ms info = do if isRelevant info then return info else do whenJust ms \ s -> warning $ FixingRelevance s (getRelevance info) relevant return $ setRelevance relevant info ensureNotLinear :: LensQuantity a => Maybe String -> a -> ScopeM a ensureNotLinear s info = do case getQuantity info of Quantityω{} -> return info Quantity0{} -> return info q@Quantity1{} -> do -- Andreas, 2024-08-24, "@1" is still not parsed, so this is impossible. __IMPOSSIBLE__ -- TODO: linearity -- let q' = Quantityω QωInferred -- warning $ FixingQuantity s q q' -- return $ setQuantity q' info ensureContinuous :: LensCohesion a => Maybe String -> a -> ScopeM a ensureContinuous ms info | isContinuous info = return info | otherwise = setCohesion Continuous info <$ do whenJust ms \ s -> warning $ FixingCohesion s (getCohesion info) Continuous ensureMixedPolarity :: LensModalPolarity a => Maybe String -> a -> ScopeM a ensureMixedPolarity ms info | splittablePolarity info = return info | otherwise = setModalPolarity mixedPolarity info <$ do whenJust ms \ s -> warning $ FixingPolarity s (getModalPolarity info) mixedPolarity -- ** More scope checking ------------------------------------------------------------------------ instance ToAbstract C.Pragma where type AbsOfCon C.Pragma = [A.Pragma] toAbstract (C.ImpossiblePragma _ strs) = case strs of "ReduceM" : _ -> impossibleTestReduceM strs _ -> impossibleTest strs toAbstract (C.OptionsPragma _ opts) = return [ A.OptionsPragma opts ] toAbstract (C.RewritePragma _ _ []) = [] <$ warning EmptyRewritePragma toAbstract (C.RewritePragma _ r xs) = singleton . A.RewritePragma r . catMaybes <$> do forM xs \ x -> setCurrentRange x $ unambiguousConOrDef NotARewriteRule x toAbstract (C.ForeignPragma _ rb s) = [] <$ addForeignCode (rangedThing rb) s toAbstract (C.CompilePragma _ rb x s) = maybe [] (\ y -> [ A.CompilePragma rb y s ]) <$> unambiguousConOrDef PragmaCompileWrongName x toAbstract (C.StaticPragma _ x) = do map A.StaticPragma . maybeToList <$> do unambiguousDef (PragmaExpectsUnambiguousProjectionOrFunction "STATIC") x toAbstract (C.InjectivePragma _ x) = do map A.InjectivePragma . maybeToList <$> do unambiguousDef (PragmaExpectsUnambiguousProjectionOrFunction "INJECTIVE") x toAbstract (C.InjectiveForInferencePragma _ x) = do map A.InjectiveForInferencePragma . maybeToList <$> do scopeCheckDef (PragmaExpectsDefinedSymbol "INJECTIVE_FOR_INFERENCE") x toAbstract pragma@(C.InlinePragma _ b x) = do caseMaybeM (toAbstract $ MaybeOldQName $ OldQName x Nothing) notInScope \case A.Con (AmbQ xs) -> concatMapM ret $ List1.toList xs A.Def x -> ret x A.Proj _ p | Just x <- getUnambiguous p -> ret x | otherwise -> uselessPragma pragma $ sINLINE ++ " used on ambiguous name " ++ prettyShow x _ -> uselessPragma pragma $ "Target of " ++ sINLINE ++ " pragma should be a function or constructor" where sINLINE = if b then "INLINE" else "NOINLINE" notInScope = [] <$ notInScopeWarning x ret y = return [ A.InlinePragma b y ] toAbstract (C.NotProjectionLikePragma _ x) = do map A.NotProjectionLikePragma . maybeToList <$> do unambiguousDef (PragmaExpectsUnambiguousProjectionOrFunction "NOT_PROJECTION_LIKE") x toAbstract (C.OverlapPragma _ xs i) = do map (flip A.OverlapPragma i) . catMaybes <$> do mapM (unambiguousConOrDef $ PragmaExpectsUnambiguousConstructorOrFunction pragma) xs where pragma = case i of Overlappable -> "OVERLAPPABLE" Overlapping -> "OVERLAPPING" Overlaps -> "OVERLAPS" Incoherent -> "INCOHERENT" -- Never written by the user: DefaultOverlap -> __IMPOSSIBLE__ FieldOverlap -> __IMPOSSIBLE__ toAbstract pragma@(C.BuiltinPragma _ rb qx) | Just b' <- b, isUntypedBuiltin b' = do q <- resolveQName qx bindUntypedBuiltin b' q return [ A.BuiltinPragma rb q ] -- Andreas, 2015-02-14 -- Some builtins cannot be given a valid Agda type, -- thus, they do not come with accompanying postulate or definition. | Just b' <- b, isBuiltinNoDef b' = do case qx of C.QName x -> do -- The name shouldn't exist yet. If it does, we raise a warning -- and drop the existing definition. unlessM ((UnknownName ==) <$> resolveName qx) $ do warning $ BuiltinDeclaresIdentifier b' modifyCurrentScope $ removeNameFromScope PublicNS x -- We then happily bind the name y <- freshAbstractQName' x let kind = fromMaybe __IMPOSSIBLE__ $ builtinKindOfName b' bindName PublicAccess kind x y return [ A.BuiltinNoDefPragma rb kind y ] _ -> uselessPragma pragma $ "Pragma BUILTIN " ++ getBuiltinId b' ++ ": expected unqualified identifier, " ++ "but found " ++ prettyShow qx | otherwise = do q0 <- resolveQName qx -- Andreas, 2020-04-12, pr #4574. For highlighting purposes: -- Rebind 'BuiltinPrim' as 'PrimName' and similar. q <- case (q0, b >>= builtinKindOfName, qx) of (DefinedName acc y suffix, Just kind, C.QName x) | anameKind y /= kind , kind `elem` [ PrimName, AxiomName ] -> do rebindName acc kind x $ anameName y return $ DefinedName acc y{ anameKind = kind } suffix _ -> return q0 return [ A.BuiltinPragma rb q ] where b = builtinById (rangedThing rb) toAbstract (C.EtaPragma _ x) = do map A.EtaPragma . maybeToList <$> do scopeCheckDef (PragmaExpectsDefinedSymbol "ETA") x toAbstract pragma@(C.DisplayPragma _ lhs rhs) = do maybeToList <$> do withLocalVars $ runMaybeT do let err = failure "DISPLAY pragma left-hand side must have form 'f e1 .. en'" getHead (C.IdentP _ x) = return x getHead (C.RawAppP _ (List2 p _ _)) = getHead p getHead _ = err top <- getHead lhs (isPatSyn, hd) <- do qx <- liftTCM $ resolveName' allKindsOfNames Nothing top case qx of VarName x' _ -> return . (False,) $ A.qnameFromList $ singleton x' DefinedName _ d NoSuffix -> return . (False,) $ anameName d DefinedName _ d Suffix{} -> failure $ "Invalid pattern " ++ prettyShow top FieldName (d :| []) -> return . (False,) $ anameName d FieldName ds -> failure $ "Ambiguous projection " ++ prettyShow top ++ ": " ++ prettyShow (AmbQ $ fmap anameName ds) ConstructorName _ (d :| []) -> return . (False,) $ anameName d ConstructorName _ ds -> failure $ "Ambiguous constructor " ++ prettyShow top ++ ": " ++ prettyShow (AmbQ $ fmap anameName ds) UnknownName -> do liftTCM $ notInScopeWarning top; mzero PatternSynResName (d :| []) -> return . (True,) $ anameName d PatternSynResName ds -> failure $ "Ambiguous pattern synonym" ++ prettyShow top ++ ": " ++ prettyShow (fmap anameName ds) lhs <- liftTCM $ toAbstract $ LeftHandSide top lhs YesDisplayLHS ps <- case lhs of A.LHS _ (A.LHSHead _ ps) -> return ps _ -> err -- Andreas, 2016-08-08, issue #2132 -- Remove pattern synonyms on lhs (hd, ps) <- do p <- liftTCM $ expandPatternSynonyms $ (if isPatSyn then A.PatternSynP else A.DefP) (PatRange $ getRange lhs) (unambiguous hd) ps case p of A.DefP _ f ps | Just hd <- getUnambiguous f -> return (hd, ps) A.ConP _ c ps | Just hd <- getUnambiguous c -> return (hd, ps) A.PatternSynP{} -> __IMPOSSIBLE__ _ -> err rhs <- liftTCM $ toAbstract rhs -- Andreas, 2024-10-06, issue #7533: -- Check that all pattern variables occur on the rhs. -- Otherwise, there might be a misunderstanding of what display forms do. let used = allUsedNames rhs List1.unlessNull (filter (not . (isNoName || (`Set.member` used))) $ patternVars ps) $ warning . UnusedVariablesInDisplayForm return $ A.DisplayPragma hd ps rhs where failure :: forall a. String -> MaybeT ScopeM a failure msg = do warning (UselessPragma (getRange pragma) $ P.fwords msg); mzero -- A warning attached to an ambiguous name shall apply to all disambiguations. toAbstract pragma@(C.WarningOnUsage _ x str) = do ys <- resolveName x >>= \case ConstructorName _ ds -> return $ List1.toList ds FieldName ds -> return $ List1.toList ds PatternSynResName ds -> return $ List1.toList ds DefinedName _ d NoSuffix -> return $ singleton d DefinedName _ d Suffix{} -> [] <$ notInScopeWarning x UnknownName -> [] <$ notInScopeWarning x VarName x _ -> [] <$ do uselessPragma pragma $ "Not a defined name: " ++ prettyShow x forM_ ys $ \ y -> stLocalUserWarnings `modifyTCLens` Map.insert (anameName y) str return [] toAbstract (C.WarningOnImport _ str) = do stWarningOnImport `setTCLens` Just str pure [] -- Termination, Coverage, Positivity, Universe, and Catchall -- pragmes are handled by the nicifier toAbstract C.TerminationCheckPragma{} = __IMPOSSIBLE__ toAbstract C.NoCoverageCheckPragma{} = __IMPOSSIBLE__ toAbstract C.NoPositivityCheckPragma{} = __IMPOSSIBLE__ toAbstract C.NoUniverseCheckPragma{} = __IMPOSSIBLE__ toAbstract C.CatchallPragma{} = __IMPOSSIBLE__ -- Polarity pragmas are handled by the niceifier. toAbstract C.PolarityPragma{} = __IMPOSSIBLE__ uselessPragma :: HasRange p => p -> String -> ScopeM [a] uselessPragma pragma = ([] <$) . warning . UselessPragma (getRange pragma) . P.fwords unambiguousConOrDef :: (C.QName -> IsAmbiguous -> Warning) -> C.QName -> ScopeM (Maybe A.QName) unambiguousConOrDef warn x = do caseMaybeM (toAbstract $ MaybeOldQName $ OldQName x Nothing) notInScope $ \case A.Def' y NoSuffix -> ret y A.Def' y Suffix{} -> failure NotAmbiguous A.Proj _ p | Just y <- getUnambiguous p -> ret y | otherwise -> failure $ YesAmbiguous p A.Con c | Just y <- getUnambiguous c -> ret y | otherwise -> failure $ YesAmbiguous c A.Var{} -> failure NotAmbiguous A.PatternSyn{} -> failure NotAmbiguous _ -> __IMPOSSIBLE__ where notInScope = Nothing <$ notInScopeWarning x failure = (Nothing <$) . warning . warn x ret = return . Just unambiguousDef :: (C.QName -> IsAmbiguous -> Warning) -> C.QName -> ScopeM (Maybe A.QName) unambiguousDef warn x = do caseMaybeM (toAbstract $ MaybeOldQName $ OldQName x Nothing) notInScope $ \case A.Def' y NoSuffix -> ret y A.Def' y Suffix{} -> failure NotAmbiguous A.Proj _ p | Just y <- getUnambiguous p -> ret y | otherwise -> failure $ YesAmbiguous p A.Con{} -> failure NotAmbiguous A.Var{} -> failure NotAmbiguous A.PatternSyn{} -> failure NotAmbiguous _ -> __IMPOSSIBLE__ where notInScope = Nothing <$ notInScopeWarning x failure = (Nothing <$) . warning . warn x ret = return . Just scopeCheckDef :: (C.QName -> Warning) -> C.QName -> ScopeM (Maybe A.QName) scopeCheckDef warn x = do caseMaybeM (toAbstract $ MaybeOldQName $ OldQName x Nothing) notInScope $ \case A.Def' y NoSuffix -> ret y A.Def' y Suffix{} -> failure A.Proj{} -> failure A.Con{} -> failure A.Var{} -> failure A.PatternSyn{} -> failure _ -> __IMPOSSIBLE__ where notInScope = Nothing <$ notInScopeWarning x failure = Nothing <$ do warning $ warn x ret = return . Just instance ToAbstract C.Clause where type AbsOfCon C.Clause = A.Clause toAbstract (C.Clause top catchall lhs@(C.LHS p eqs with) rhs wh wcs) = withLocalVars $ do -- Jesper, 2018-12-10, #3095: pattern variables bound outside the -- module are locally treated as module parameters modifyScope_ $ updateScopeLocals $ map $ second patternToModuleBound -- Andreas, 2012-02-14: need to reset local vars before checking subclauses vars0 <- getLocalVars lhs' <- toAbstract $ LeftHandSide (C.QName top) p NoDisplayLHS printLocals 30 "after lhs:" vars1 <- getLocalVars eqs <- mapM (toAbstractCtx TopCtx) eqs vars2 <- getLocalVars let vars = dropEnd (length vars1) vars2 ++ vars0 let wcs' = (vars, wcs) -- Handle rewrite equations first. if not (null eqs) then do rhs <- toAbstractCtx TopCtx $ RightHandSide eqs with wcs' rhs wh rhs <- toAbstract rhs return $ A.Clause lhs' [] rhs A.noWhereDecls catchall else do -- the right hand side is checked with the module of the local definitions opened (rhs, ds) <- whereToAbstract (getRange wh) wh $ toAbstractCtx TopCtx $ RightHandSide [] with wcs' rhs NoWhere rhs <- toAbstract rhs return $ A.Clause lhs' [] rhs ds catchall whereToAbstract :: Range -- ^ The range of the @where@ block. -> C.WhereClause -- ^ The @where@ block. -> ScopeM a -- ^ The scope-checking task to be run in the context of the @where@ module. -> ScopeM (a, A.WhereDeclarations) -- ^ Additionally return the scope-checked contents of the @where@ module. whereToAbstract r wh inner = do case wh of NoWhere -> ret AnyWhere _ [] -> warnEmptyWhere AnyWhere _ ds -> enter do -- Andreas, 2016-07-17 issues #2081 and #2101 -- where-declarations are automatically private. -- Andreas, 2025-03-29 -- While since PR #5192 (Feb 2021, issue #481) it is no longer the case -- that we check their type signatures in abstract mode, -- we still need to mark the declaration as private -- e.g. to avoid spurious UnknownFixityInMixfixDecl warnings (issue #2889). whereToAbstract1 r defaultErased Nothing (singleton $ C.Private empty Inserted ds) inner SomeWhere _ e m a ds0 -> enter $ List1.ifNull ds0 warnEmptyWhere {-else-} \ ds -> -- Named where-modules do not default to private. whereToAbstract1 r e (Just (m, a)) ds inner where enter = localTC \ env -> env { envCheckingWhere = C.whereClause_ wh } ret = (,A.noWhereDecls) <$> inner warnEmptyWhere = do setCurrentRange r $ warning EmptyWhere ret whereToAbstract1 :: Range -- ^ The range of the @where@-block. -> Erased -- ^ Is the where module erased? -> Maybe (C.Name, Access) -- ^ The name of the @where@ module (if any). -> List1 C.Declaration -- ^ The contents of the @where@ module. -> ScopeM a -- ^ The scope-checking task to be run in the context of the @where@ module. -> ScopeM (a, A.WhereDeclarations) -- ^ Additionally return the scope-checked contents of the @where@ module. whereToAbstract1 r e whname whds inner = do -- ASR (16 November 2015) Issue 1137: We ban termination -- pragmas inside `where` clause. checkNoTerminationPragma InWhereBlock whds -- Create a fresh concrete name if there isn't (a proper) one. (m, acc) <- do case whname of Just (m, acc) | not (isNoName m) -> return (m, acc) _ -> fresh <&> \ x -> (C.NoName (getRange whname) x, privateAccessInserted) -- unnamed where's are private old <- getCurrentModule am <- toAbstract (NewModuleName m) (scope, d) <- scopeCheckModule r e (C.QName m) am [] $ toAbstract $ Declarations $ List1.toList whds setScope scope x <- inner setCurrentModule old bindModule acc m am -- Issue 848: if the module was anonymous (module _ where) open it public let anonymousSomeWhere = maybe False (isNoName . fst) whname when anonymousSomeWhere $ void $ -- We can ignore the returned default A.ImportDirective. openModule TopOpenModule (Just am) (C.QName m) $ defaultImportDir { publicOpen = Just empty } return (x, A.WhereDecls (Just am) (isNothing whname) $ singleton d) data TerminationOrPositivity = Termination | Positivity deriving (Show) data WhereOrRecord = InWhereBlock | InRecordDef checkNoTerminationPragma :: FoldDecl a => WhereOrRecord -> a -> ScopeM () checkNoTerminationPragma b ds = -- foldDecl traverses into all sub-declarations. forM_ (foldDecl (isPragma >=> isTerminationPragma) ds) \ (p, r) -> setCurrentRange r $ warning $ UselessPragma r $ P.vcat [ P.text $ show p ++ " pragmas are ignored in " ++ what b , P.text $ "(see " ++ issue b ++ ")" ] where what InWhereBlock = "where clauses" what InRecordDef = "record definitions" github n = "https://github.com/agda/agda/issues/" ++ show n issue InWhereBlock = github 3355 issue InRecordDef = github 3008 isTerminationPragma :: C.Pragma -> [(TerminationOrPositivity, Range)] isTerminationPragma = \case C.TerminationCheckPragma r _ -> [(Termination, r)] C.NoPositivityCheckPragma r -> [(Positivity, r)] C.OptionsPragma _ _ -> [] C.BuiltinPragma _ _ _ -> [] C.RewritePragma _ _ _ -> [] C.ForeignPragma _ _ _ -> [] C.CompilePragma _ _ _ _ -> [] C.StaticPragma _ _ -> [] C.InlinePragma _ _ _ -> [] C.ImpossiblePragma _ _ -> [] C.EtaPragma _ _ -> [] C.WarningOnUsage _ _ _ -> [] C.WarningOnImport _ _ -> [] C.InjectivePragma _ _ -> [] C.InjectiveForInferencePragma{} -> [] C.DisplayPragma _ _ _ -> [] C.CatchallPragma _ -> [] C.NoCoverageCheckPragma _ -> [] C.PolarityPragma _ _ _ -> [] C.NoUniverseCheckPragma _ -> [] C.NotProjectionLikePragma _ _ -> [] C.OverlapPragma _ _ _ -> [] data RightHandSide = RightHandSide { _rhsRewriteEqn :: [RewriteEqn' () A.BindName A.Pattern A.Expr] -- ^ @rewrite e | with p <- e in eq@ (many) , _rhsWithExpr :: [C.WithExpr] -- ^ @with e@ (many) , _rhsSubclauses :: (LocalVars, [C.Clause]) -- ^ the subclauses spawned by a with (monadic because we need to reset the local vars before checking these clauses) , _rhs :: C.RHS , _rhsWhere :: WhereClause -- ^ @where@ module. } data AbstractRHS = AbsurdRHS' | WithRHS' (List1 A.WithExpr) (List1 (ScopeM C.Clause)) -- ^ The with clauses haven't been translated yet | RHS' A.Expr C.Expr | RewriteRHS' [RewriteEqn' () A.BindName A.Pattern A.Expr] AbstractRHS A.WhereDeclarations qualifyName_ :: A.Name -> ScopeM A.QName qualifyName_ x = do m <- getCurrentModule return $ A.qualify m x withFunctionName :: String -> ScopeM A.QName withFunctionName s = do NameId i _ <- fresh qualifyName_ =<< freshName_ (s ++ show i) instance ToAbstract (RewriteEqn' () A.BindName A.Pattern A.Expr) where type AbsOfCon (RewriteEqn' () A.BindName A.Pattern A.Expr) = A.RewriteEqn toAbstract = \case Rewrite es -> fmap Rewrite $ forM es $ \ (_, e) -> do qn <- withFunctionName "-rewrite" pure (qn, e) Invert _ pes -> do qn <- withFunctionName "-invert" pure $ Invert qn pes LeftLet pes -> pure $ LeftLet pes instance ToAbstract C.RewriteEqn where type AbsOfCon C.RewriteEqn = RewriteEqn' () A.BindName A.Pattern A.Expr toAbstract = \case Rewrite es -> Rewrite <$> mapM toAbstract es Invert _ npes -> Invert () <$> do -- Given a list of irrefutable with expressions of the form @p <- e in q@ let (nps, es) = List1.unzip $ fmap (\ (Named nm (p, e)) -> ((nm, p), e)) npes -- we first check the expressions @e@: the patterns may shadow some of the -- variables mentioned in them! es <- toAbstract es -- we then parse the pairs of patterns @p@ and names @q@ for the equality -- constraints of the form @p ≡ e@. nps <- forM nps $ \ (n, p) -> do -- first the pattern p <- toAbsPat p -- and then the name n <- toAbstract $ fmap (NewName WithBound . C.mkBoundName_) n pure (n, p) -- we finally reassemble the telescope pure $ List1.zipWith (\ (n,p) e -> Named n (p, e)) nps es LeftLet pes -> fmap LeftLet $ forM pes $ \ (p, e) -> do -- first check the expression: the pattern may shadow -- some of the variables mentioned in it! e <- toAbstract e p <- toAbsPat p pure (p, e) where toAbsPat p = do -- Expand puns if optHiddenArgumentPuns is True. p <- expandPunsOpt p p <- parsePattern p p <- toAbstract p checkPatternLinearity p (typeError . RepeatedVariablesInPattern) bindVarsToBind toAbstract p instance ToAbstract AbstractRHS where type AbsOfCon AbstractRHS = A.RHS toAbstract AbsurdRHS' = return A.AbsurdRHS toAbstract (RHS' e c) = return $ A.RHS e $ Just c toAbstract (RewriteRHS' eqs rhs wh) = do eqs <- toAbstract eqs rhs <- toAbstract rhs return $ RewriteRHS eqs [] rhs wh toAbstract (WithRHS' es cs) = do aux <- withFunctionName "with-" A.WithRHS aux es <$> do toAbstract =<< sequence cs instance ToAbstract RightHandSide where type AbsOfCon RightHandSide = AbstractRHS toAbstract (RightHandSide eqs@(_:_) es cs rhs wh) = do (rhs, ds) <- whereToAbstract (getRange wh) wh $ toAbstract (RightHandSide [] es cs rhs NoWhere) return $ RewriteRHS' eqs rhs ds toAbstract (RightHandSide [] [] (_ , _:_) _ _) = __IMPOSSIBLE__ toAbstract (RightHandSide [] (_:_) _ (C.RHS _) _) = typeError BothWithAndRHS -- issue #7760 toAbstract (RightHandSide [] [] (_ , []) rhs NoWhere) = toAbstract rhs toAbstract (RightHandSide [] (z:zs)(lv , c:cs) C.AbsurdRHS NoWhere) = do let (ns, es) = List1.unzipWith (\ (Named nm e) -> (NewName WithBound . C.mkBoundName_ <$> nm, e)) $ z :| zs es <- toAbstractCtx TopCtx es lvars0 <- getLocalVars ns <- toAbstract ns lvars1 <- getLocalVars let lv' = dropEnd (length lvars0) lvars1 ++ lv let cs' = for (c :| cs) $ \ c -> setLocalVars lv' $> c let nes = List1.zipWith Named ns es return $ WithRHS' nes cs' -- TODO: some of these might be possible toAbstract (RightHandSide [] (_ : _) _ C.AbsurdRHS AnyWhere{}) = __IMPOSSIBLE__ toAbstract (RightHandSide [] (_ : _) _ C.AbsurdRHS SomeWhere{}) = __IMPOSSIBLE__ toAbstract (RightHandSide [] (_ : _) _ C.AbsurdRHS NoWhere{}) = __IMPOSSIBLE__ toAbstract (RightHandSide [] [] (_, []) C.AbsurdRHS AnyWhere{}) = __IMPOSSIBLE__ toAbstract (RightHandSide [] [] (_, []) C.AbsurdRHS SomeWhere{}) = __IMPOSSIBLE__ toAbstract (RightHandSide [] [] (_, []) C.RHS{} AnyWhere{}) = __IMPOSSIBLE__ toAbstract (RightHandSide [] [] (_, []) C.RHS{} SomeWhere{}) = __IMPOSSIBLE__ instance ToAbstract C.RHS where type AbsOfCon C.RHS = AbstractRHS toAbstract C.AbsurdRHS = return $ AbsurdRHS' toAbstract (C.RHS e) = RHS' <$> toAbstract e <*> pure e -- | Wrapper to check lhs (possibly of a 'C.DisplayPragma'). -- data LeftHandSide = LeftHandSide C.QName -- ^ Name of the definition we are checking. C.Pattern -- ^ Full left hand side. DisplayLHS -- ^ Are we checking a 'C.DisplayPragma'? instance ToAbstract LeftHandSide where type AbsOfCon LeftHandSide = A.LHS toAbstract (LeftHandSide top lhs displayLhs) = traceCall (ScopeCheckLHS top lhs) $ do reportSLn "scope.lhs" 25 $ "original lhs: " ++ prettyShow lhs reportSLn "scope.lhs" 60 $ "patternQNames: " ++ prettyShow (patternQNames lhs) reportSLn "scope.lhs" 60 $ "original lhs (raw): " ++ show lhs -- Expand puns if optHiddenArgumentPuns is True. Note that pun -- expansion should happen before the left-hand side is -- parsed, because {(x)} is not treated as a pun, whereas {x} -- is. lhs <- expandPunsOpt lhs reportSLn "scope.lhs" 25 $ "lhs with expanded puns: " ++ prettyShow lhs reportSLn "scope.lhs" 60 $ "lhs with expanded puns (raw): " ++ show lhs lhscore <- parseLHS displayLhs top lhs let ell = hasExpandedEllipsis lhscore reportSLn "scope.lhs" 25 $ "parsed lhs: " ++ prettyShow lhscore reportSLn "scope.lhs" 60 $ "parsed lhs (raw): " ++ show lhscore printLocals 30 "before lhs:" -- error if copattern parsed but --no-copatterns option unlessM (optCopatterns <$> pragmaOptions) $ when (hasCopatterns lhscore) $ typeError $ NeedOptionCopatterns -- scope check patterns except for dot patterns lhscore <- toAbstract $ CLHSCore displayLhs lhscore bindVarsToBind -- reportSLn "scope.lhs" 25 $ "parsed lhs patterns: " ++ prettyShow lhscore -- TODO: Pretty A.LHSCore' reportSLn "scope.lhs" 60 $ "parsed lhs patterns: " ++ show lhscore printLocals 30 "checked pattern:" -- scope check dot patterns lhscore <- toAbstract lhscore -- reportSLn "scope.lhs" 25 $ "parsed lhs dot patterns: " ++ prettyShow lhscore -- TODO: Pretty A.LHSCore' reportSLn "scope.lhs" 60 $ "parsed lhs dot patterns: " ++ show lhscore printLocals 30 "checked dots:" return $ A.LHS (LHSInfo (getRange lhs) ell) lhscore -- | Expands hidden argument puns when option 'optHiddenArgumentPuns' is set. expandPunsOpt :: C.Pattern -> ScopeM C.Pattern expandPunsOpt p = do pragmaOptions <&> optHiddenArgumentPuns <&> \case True -> expandPuns p False -> p -- | Expands hidden argument puns. expandPuns :: C.Pattern -> C.Pattern expandPuns = mapCPattern \case C.HiddenP r p -> C.HiddenP r $ expand p C.InstanceP r p -> C.InstanceP r $ expand p p -> p where -- Only patterns of the form {x} or ⦃ x ⦄, where x is an unqualified -- name (not @_@), are interpreted as puns. expand :: Named_ C.Pattern -> Named_ C.Pattern expand (Named { namedThing = C.IdentP _ q@(C.QName x@C.Name{}) , nameOf = Nothing }) = Named { namedThing = C.IdentP False q , nameOf = Just $ WithOrigin { woOrigin = ExpandedPun , woThing = unranged (prettyShow x) } } expand p = p hasExpandedEllipsis :: C.LHSCore -> ExpandedEllipsis hasExpandedEllipsis core = case core of C.LHSHead{} -> NoEllipsis C.LHSProj{} -> hasExpandedEllipsis $ namedArg $ C.lhsFocus core -- can this ever be ExpandedEllipsis? C.LHSWith{} -> hasExpandedEllipsis $ C.lhsHead core C.LHSEllipsis r p -> case p of C.LHSWith p wps _ -> hasExpandedEllipsis p <> ExpandedEllipsis r (length wps) C.LHSHead{} -> ExpandedEllipsis r 0 C.LHSProj{} -> ExpandedEllipsis r 0 C.LHSEllipsis{} -> __IMPOSSIBLE__ -- | Merges adjacent EqualP patterns into one: -- type checking expects only one pattern for each domain in the telescope. mergeEqualPs :: [NamedArg (Pattern' e)] -> ScopeM [NamedArg (Pattern' e)] mergeEqualPs = go (empty, []) where go acc (p@(Arg ai (Named mn (A.EqualP r es))) : ps) = setCurrentRange p $ do -- Face constraint patterns must be defaultNamedArg; check this: unless (getModality ai == defaultModality) __IMPOSSIBLE__ when (notVisible ai) $ warning $ FaceConstraintCannotBeHidden ai whenJust mn $ \ x -> setCurrentRange x $ warning $ FaceConstraintCannotBeNamed x go (acc `mappend` (r, List1.toList es)) ps go (r, (e:es)) ps = (defaultNamedArg (A.EqualP r $ e :| es) :) <$> mergeEqualPs ps go (_, []) [] = return [] go (_, []) (p : ps) = (p :) <$> mergeEqualPs ps -- | Scope-check a 'C.LHSCore' (of possibly a 'C.DisplayForm'). data CLHSCore = CLHSCore DisplayLHS -- ^ Are we checking the left hand side of a 'C.DisplayForm'? C.LHSCore -- ^ The lhs to scope-check. -- | Scope-check a 'C.LHSCore' not of a 'C.DisplayForm'. instance ToAbstract C.LHSCore where type AbsOfCon C.LHSCore = A.LHSCore' C.Expr toAbstract = toAbstract . CLHSCore NoDisplayLHS -- does not check pattern linearity instance ToAbstract CLHSCore where type AbsOfCon CLHSCore = A.LHSCore' C.Expr toAbstract (CLHSCore displayLhs core0) = case core0 of C.LHSHead x ps -> do x <- withLocalVars do setLocalVars [] toAbstract (OldName x) ps <- toAbstract $ (fmap . fmap . fmap) (CPattern displayLhs) ps A.LHSHead x <$> mergeEqualPs ps C.LHSProj d ps1 core ps2 -> do unless (null ps1) $ typeError $ IllformedProjectionPatternConcrete (foldl C.AppP (C.IdentP True d) ps1) ds <- resolveName d >>= \case FieldName ds -> return $ fmap anameName ds UnknownName -> notInScopeError d _ -> typeError $ CopatternHeadNotProjection d core <- toAbstract $ (fmap . fmap) (CLHSCore displayLhs) core ps2 <- toAbstract $ (fmap . fmap . fmap) (CPattern displayLhs) ps2 A.LHSProj (AmbQ ds) core <$> mergeEqualPs ps2 C.LHSWith core wps ps -> do -- DISPLAY pragmas cannot have @with@, so no need to pass on @displayLhs@. core <- toAbstract core wps <- fmap defaultArg <$> toAbstract wps ps <- toAbstract ps return $ A.lhsCoreApp (A.lhsCoreWith core wps) ps -- In case of a part of the LHS which was expanded from an ellipsis, -- we flush the @scopeVarsToBind@ in order to allow variables bound -- in the ellipsis to be shadowed. C.LHSEllipsis _ core -> do core <- toAbstract core -- Cannot come from a DISPLAY pragma. bindVarsToBind return core instance ToAbstract c => ToAbstract (WithHiding c) where type AbsOfCon (WithHiding c) = WithHiding (AbsOfCon c) toAbstract (WithHiding h a) = WithHiding h <$> toAbstractHiding h a instance ToAbstract c => ToAbstract (Arg c) where type AbsOfCon (Arg c) = Arg (AbsOfCon c) toAbstract (Arg info e) = Arg info <$> toAbstractHiding info e instance ToAbstract c => ToAbstract (Named name c) where type AbsOfCon (Named name c) = Named name (AbsOfCon c) toAbstract = traverse toAbstract instance ToAbstract c => ToAbstract (Ranged c) where type AbsOfCon (Ranged c) = Ranged (AbsOfCon c) toAbstract = traverse toAbstract {- DOES NOT WORK ANYMORE with pattern synonyms instance ToAbstract c a => ToAbstract (A.LHSCore' c) (A.LHSCore' a) where toAbstract = mapM toAbstract -} instance ToAbstract (A.LHSCore' C.Expr) where type AbsOfCon (A.LHSCore' C.Expr) = A.LHSCore' A.Expr toAbstract (A.LHSHead f ps) = A.LHSHead f <$> mapM toAbstract ps toAbstract (A.LHSProj d lhscore ps) = A.LHSProj d <$> mapM toAbstract lhscore <*> mapM toAbstract ps toAbstract (A.LHSWith core wps ps) = liftA3 A.LHSWith (toAbstract core) (toAbstract wps) (toAbstract ps) -- Patterns are done in two phases. First everything but the dot patterns, and -- then the dot patterns. This is because dot patterns can refer to variables -- bound anywhere in the pattern. instance ToAbstract (A.Pattern' C.Expr) where type AbsOfCon (A.Pattern' C.Expr) = A.Pattern' A.Expr toAbstract = traverse $ insideDotPattern . toAbstractCtx DotPatternCtx -- Issue #3033 resolvePatternIdentifier :: Bool -- ^ Is the identifier allowed to refer to a constructor (or a pattern synonym)? -- -- Value 'False' is only used when 'optHiddenArgumentPuns' is 'True'. -- In this case, error 'InvalidPun' is thrown on identifiers that are not variables. -> DisplayLHS -- ^ Are definitions to be treated as constructors? -- 'True' when we are checking a 'C.DisplayForm'. -> Hiding -- ^ Is the pattern variable hidden? -> C.QName -- ^ Identifier. -> Maybe (Set1 A.Name) -- ^ Possibly precomputed resolutions of the identifier (from the operator parser). -> ScopeM (A.Pattern' C.Expr) resolvePatternIdentifier canBeConstructor displayLhs h x ns = do reportSLn "scope.pat" 60 $ "resolvePatternIdentifier " ++ prettyShow x ++ " at source position " ++ prettyShow r toAbstract (PatName x ns h displayLhs) >>= \case VarPatName y -> do reportSLn "scope.pat" 60 $ " resolved to VarPatName " ++ prettyShow y ++ " with range " ++ prettyShow (getRange y) return $ VarP $ A.mkBindName y ConPatName ds -> do unless canBeConstructor $ err IsConstructor return $ ConP (ConPatInfo ConOCon info ConPatEager) (AmbQ $ fmap anameName ds) [] PatternSynPatName ds -> do unless canBeConstructor $ err IsPatternSynonym return $ PatternSynP info (AmbQ $ fmap anameName ds) [] DefPatName d -> do unless displayLhs __IMPOSSIBLE__ return $ DefP info (AmbQ $ singleton $ anameName d) [] where r = getRange x info = PatRange r err s = setCurrentRange r $ typeError $ InvalidPun s x -- | Apply an abstract syntax pattern head to pattern arguments. -- -- Fails with 'InvalidPattern' if head is not a constructor pattern -- (or similar) that can accept arguments. -- applyAPattern :: C.Pattern -- ^ The application pattern in concrete syntax. -> A.Pattern' C.Expr -- ^ Head of application. -> NAPs1 C.Expr -- ^ Arguments of application. -> ScopeM (A.Pattern' C.Expr) applyAPattern p0 p ps1 = do let ps = List1.toList ps1 setRange (getRange p0) <$> do case p of A.ConP i x as -> return $ A.ConP i x (as ++ ps) A.DefP i x as -> return $ A.DefP i x (as ++ ps) A.PatternSynP i x as -> return $ A.PatternSynP i x (as ++ ps) -- Dotted constructors are turned into "lazy" constructor patterns. A.DotP i (Ident x) -> resolveName x >>= \case ConstructorName _ ds -> do let cpi = ConPatInfo ConOCon i ConPatLazy c = AmbQ (fmap anameName ds) return $ A.ConP cpi c ps _ -> failure A.DotP{} -> failure A.VarP{} -> failure A.ProjP{} -> failure A.WildP{} -> failure A.AsP{} -> failure A.AbsurdP{} -> failure A.LitP{} -> failure A.RecP{} -> failure A.EqualP{} -> failure A.WithP{} -> failure where failure = typeError $ InvalidPattern p0 -- | Throw-away wrapper type for pattern translation. data WithHidingInfo a = WithHidingInfo Hiding a propagateHidingInfo :: NamedArg a -> NamedArg (WithHidingInfo a) propagateHidingInfo a = fmap (fmap $ WithHidingInfo $ getHiding a) a -- | Hiding info is only used for pattern variables. instance ToAbstract (WithHidingInfo C.Pattern) where type AbsOfCon (WithHidingInfo C.Pattern) = A.Pattern' C.Expr toAbstract (WithHidingInfo h (C.IdentP canBeConstructor x)) = resolvePatternIdentifier canBeConstructor NoDisplayLHS h x Nothing toAbstract (WithHidingInfo _ p) = toAbstract p -- | Scope check a 'C.Pattern' (of possibly a 'C.DisplayForm'). -- data CPattern = CPattern DisplayLHS -- ^ Are we checking a 'C.DisplayForm'? C.Pattern -- ^ The pattern to scope-check. -- | Scope check a 'C.Pattern' not belonging to a 'C.DisplayForm'. -- instance ToAbstract C.Pattern where type AbsOfCon C.Pattern = A.Pattern' C.Expr toAbstract = toAbstract . CPattern NoDisplayLHS instance ToAbstract CPattern where type AbsOfCon CPattern = A.Pattern' C.Expr toAbstract (CPattern displayLhs p0) = case p0 of C.IdentP canBeConstructor x -> resolvePatternIdentifier canBeConstructor displayLhs empty x Nothing QuoteP _r -> typeError $ CannotQuote CannotQuoteNothing AppP (QuoteP _) p | IdentP _ x <- namedArg p -> do if visible p then do e <- toAbstract (OldQName x Nothing) A.LitP (PatRange $ getRange x) . LitQName <$> quotedName e else typeError $ CannotQuote CannotQuoteHidden | otherwise -> typeError $ CannotQuote $ CannotQuotePattern p AppP p q -> do reportSLn "scope.pat" 50 $ "distributeDots before = " ++ show p p <- distributeDots p reportSLn "scope.pat" 50 $ "distributeDots after = " ++ show p p' <- toAbstract (wrap p) -- Remember hiding info in argument to propagate to 'PatternBound'. q' <- ifThenElse displayLhs {-then-} (toAbstract $ (fmap . fmap) wrap q) {-else-} (toAbstract $ propagateHidingInfo q) applyAPattern p0 p' $ singleton q' where distributeDots :: C.Pattern -> ScopeM C.Pattern distributeDots p@(C.DotP kwr r e) = distributeDotsExpr kwr r e distributeDots p = return p distributeDotsExpr :: KwRange -> Range -> C.Expr -> ScopeM C.Pattern distributeDotsExpr kwr r e = parseRawApp e >>= \case C.App r e a -> AppP <$> distributeDotsExpr empty r e <*> (traverse . traverse) (distributeDotsExpr empty r) a OpApp r q ns as -> case (traverse . traverse . traverse) fromNoPlaceholder as of Just as -> OpAppP r q ns <$> (traverse . traverse . traverse) (distributeDotsExpr empty r) as Nothing -> return $ C.DotP empty r e Paren r e -> ParenP r <$> distributeDotsExpr empty r e _ -> return $ C.DotP kwr r e fromNoPlaceholder :: MaybePlaceholder (OpApp a) -> Maybe a fromNoPlaceholder (NoPlaceholder _ (Ordinary e)) = Just e fromNoPlaceholder _ = Nothing parseRawApp :: C.Expr -> ScopeM C.Expr parseRawApp (RawApp r es) = parseApplication es parseRawApp e = return e OpAppP r op ns ps -> do reportSLn "scope.pat" 60 $ "ConcreteToAbstract.toAbstract OpAppP{}: " ++ show p0 p <- resolvePatternIdentifier True displayLhs empty op (Just ns) -- Remember hiding info in arguments to propagate to 'PatternBound'. ps <- ifThenElse displayLhs {-then-} (toAbstract $ (fmap . fmap . fmap) wrap ps) {-else-} (toAbstract $ fmap propagateHidingInfo ps) applyAPattern p0 p ps EllipsisP _ mp -> maybe __IMPOSSIBLE__ toAbstract mp -- Not in DISPLAY pragma -- Removed when parsing HiddenP _ _ -> __IMPOSSIBLE__ InstanceP _ _ -> __IMPOSSIBLE__ RawAppP _ _ -> __IMPOSSIBLE__ C.WildP r -> return $ A.WildP $ PatRange r -- Andreas, 2015-05-28 futile attempt to fix issue 819: repeated variable on lhs "_" -- toAbstract p@(C.WildP r) = A.VarP <$> freshName r "_" C.ParenP _ p -> toAbstract $ wrap p -- Andreas, 2024-09-27 not impossible C.LitP r l -> setCurrentRange r $ A.LitP (PatRange r) l <$ checkLiteral l C.AsP r x p -> do -- Andreas, 2018-06-30, issue #3147: as-variables can be non-linear a priori! -- x <- toAbstract (NewName PatternBound x) -- Andreas, 2020-05-01, issue #4631: as-variables should not shadow constructors. -- x <- bindPatternVariable x toAbstract (PatName (C.QName x) Nothing empty NoDisplayLHS) >>= \case VarPatName x -> A.AsP (PatRange r) (A.mkBindName x) <$> toAbstract (wrap p) ConPatName{} -> ignoreAsPat IsConstructor PatternSynPatName{} -> ignoreAsPat IsPatternSynonym DefPatName{} -> __IMPOSSIBLE__ -- because of @False@ in @PatName@ where -- An @-bound name which shadows a constructor is illegal and becomes dead code. ignoreAsPat b = do setCurrentRange x $ warning $ AsPatternShadowsConstructorOrPatternSynonym b toAbstract $ wrap p C.EqualP r es -> return $ A.EqualP (PatRange r) es -- We have to do dot patterns at the end since they can -- refer to the variables bound by the other patterns. C.DotP _kwr r e -> do let fallback = return $ A.DotP (PatRange r) e case e of C.Ident x -> resolveName x >>= \case -- Andreas, 2018-06-19, #3130 -- We interpret .x as postfix projection if x is a field name in scope FieldName xs -> return $ A.ProjP (PatRange r) ProjPostfix $ AmbQ $ fmap anameName xs _ -> fallback _ -> fallback C.AbsurdP r -> return $ A.AbsurdP $ PatRange r C.RecP r fs -> A.RecP (ConPatInfo ConORec (PatRange r) ConPatEager) <$> mapM (traverse $ toAbstract . wrap) fs C.WithP r p -> A.WithP (PatRange r) <$> toAbstract p -- not in DISPLAY pragma where -- Pass on @displayLhs@ context wrap = CPattern displayLhs -- | An argument @OpApp C.Expr@ to an operator can have binders, -- in case the operator is some @syntax@-notation. -- For these binders, we have to create lambda-abstractions. toAbstractOpArg :: Precedence -> OpApp C.Expr -> ScopeM A.Expr toAbstractOpArg ctx (Ordinary e) = toAbstractCtx ctx e toAbstractOpArg ctx (SyntaxBindingLambda r bs e) = toAbstractLam r bs e ctx -- | Turn an operator application into abstract syntax. Make sure to -- record the right precedences for the various arguments. toAbstractOpApp :: C.QName -> Set1 A.Name -> OpAppArgs -> ScopeM A.Expr toAbstractOpApp op ns es = do -- Replace placeholders with bound variables. (binders, es) <- replacePlaceholders $ List1.toList es -- Get the notation for the operator. nota <- getNotation op ns let parts = notation nota -- We can throw away the @VarPart@s, since binders -- have been preprocessed into @OpApp C.Expr@. let nonBindingParts = filter (not . isBinder) parts -- We should be left with as many holes as we have been given args @es@. -- If not, crash. unless (length (filter isAHole nonBindingParts) == length es) __IMPOSSIBLE__ -- Translate operator and its arguments (each in the right context). op <- toAbstract (OldQName op (Just ns)) es <- left (notaFixity nota) nonBindingParts es -- Prepend the generated section binders (if any). let body = List.foldl' app op es return $ foldr (A.Lam (ExprRange (getRange body))) body binders where -- Build an application in the abstract syntax, with correct Range. app e (pref, arg) = A.App info e arg where info = (defaultAppInfo r) { appOrigin = getOrigin arg , appParens = pref } r = fuseRange e arg inferParenPref :: NamedArg (Either A.Expr (OpApp C.Expr)) -> ParenPreference inferParenPref e = case namedArg e of Right (Ordinary e) -> inferParenPreference e Left{} -> PreferParenless -- variable inserted by section expansion Right{} -> PreferParenless -- syntax lambda -- Translate an argument. Returns the paren preference for the argument, so -- we can build the correct info for the A.App node. toAbsOpArg :: Precedence -> NamedArg (Either A.Expr (OpApp C.Expr)) -> ScopeM (ParenPreference, NamedArg A.Expr) toAbsOpArg cxt e = (pref,) <$> (traverse . traverse) (either return (toAbstractOpArg cxt)) e where pref = inferParenPref e -- The hole left to the first @IdPart@ is filled with an expression in @LeftOperandCtx@. left :: Fixity -> [NotationPart] -> [NamedArg (Either A.Expr (OpApp C.Expr))] -> ScopeM [(ParenPreference, NamedArg A.Expr)] left f (IdPart _ : xs) es = inside f xs es left f (_ : xs) (e : es) = do e <- toAbsOpArg (LeftOperandCtx f) e es <- inside f xs es return (e : es) left f (_ : _) [] = __IMPOSSIBLE__ left f [] _ = __IMPOSSIBLE__ -- The holes in between the @IdPart@s are filled with an expression in @InsideOperandCtx@. inside :: Fixity -> [NotationPart] -> [NamedArg (Either A.Expr (OpApp C.Expr))] -> ScopeM [(ParenPreference, NamedArg A.Expr)] inside f [x] es = right f x es inside f (IdPart _ : xs) es = inside f xs es inside f (_ : xs) (e : es) = do e <- toAbsOpArg InsideOperandCtx e es <- inside f xs es return (e : es) inside _ [] [] = return [] inside _ (_ : _) [] = __IMPOSSIBLE__ inside _ [] (_ : _) = __IMPOSSIBLE__ -- The hole right of the last @IdPart@ is filled with an expression in @RightOperandCtx@. right :: Fixity -> NotationPart -> [NamedArg (Either A.Expr (OpApp C.Expr))] -> ScopeM [(ParenPreference, NamedArg A.Expr)] right _ (IdPart _) [] = return [] right f _ [e] = do let pref = inferParenPref e e <- toAbsOpArg (RightOperandCtx f pref) e return [e] right _ _ _ = __IMPOSSIBLE__ replacePlaceholders :: OpAppArgs0 e -> ScopeM ([A.LamBinding], [NamedArg (Either A.Expr (OpApp e))]) replacePlaceholders [] = return ([], []) replacePlaceholders (a : as) = case namedArg a of NoPlaceholder _ x -> mapSnd (set (Right x) a :) <$> replacePlaceholders as Placeholder _ -> do x <- freshName noRange "section" let i = setOrigin Inserted $ argInfo a (ls, ns) <- replacePlaceholders as return ( A.mkDomainFree (unnamedArg i $ A.insertedBinder_ x) : ls , set (Left (Var x)) a : ns ) where set :: a -> NamedArg b -> NamedArg a set x arg = fmap (fmap (const x)) arg -- | Raises an error if the list of attributes contains an unsupported -- attribute. checkAttributes :: Attributes -> ScopeM () checkAttributes [] = return () checkAttributes (Attr r s attr : attrs) = case attr of RelevanceAttribute{} -> cont CA.TacticAttribute{} -> cont LockAttribute IsNotLock -> cont LockAttribute IsLock{} -> do unlessM (optGuarded <$> pragmaOptions) $ setCurrentRange r $ typeError $ AttributeKindNotEnabled "Lock" "--guarded" s cont QuantityAttribute Quantityω{} -> cont QuantityAttribute Quantity1{} -> __IMPOSSIBLE__ QuantityAttribute Quantity0{} -> do unlessM (optErasure <$> pragmaOptions) $ setCurrentRange r $ typeError $ AttributeKindNotEnabled "Erasure" "--erasure" s cont CohesionAttribute{} -> do unlessM (optCohesion <$> pragmaOptions) $ setCurrentRange r $ typeError $ AttributeKindNotEnabled "Cohesion" "--cohesion" s cont PolarityAttribute{} -> do unlessM (optPolarity <$> pragmaOptions) $ setCurrentRange r $ typeError $ AttributeKindNotEnabled "Polarity" "--polarity" s cont where cont = checkAttributes attrs {-------------------------------------------------------------------------- Things we parse but are not part of the Agda file syntax --------------------------------------------------------------------------} -- | Content of interaction hole. instance ToAbstract C.HoleContent where type AbsOfCon C.HoleContent = A.HoleContent toAbstract = \case HoleContentExpr e -> HoleContentExpr <$> toAbstract e HoleContentRewrite es -> HoleContentRewrite <$> toAbstract es